Независимые случайные величины
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Содержание
Определения
| Определение: |
| Cлучайные величины и называются независимыми (англ. independent), если события и независимы. |
Иначе говоря, две случайные величины называются независимыми, если по значению одной нельзя сделать выводы о значении другой.
Независимость в совокупности
| Определение: |
| Случайные величины называются независимы в совокупности (англ. mutually independent), если события независимы в совокупности. |
Примеры
Карты
Пусть есть колода из карт ( масти и номиналов). Мы вытягиваем одну карту из случайным образом перемешанной колоды (вероятности вытягивания каждой отдельной карты равны). Определим следующие случайные величины:
— масть вытянутой карты : — червы, — пики, — крести, — бубны
: принимает значение при вытягивании карт с номиналами или при вытягивании валета, дамы, короля или туза
Для доказательства того, что независимы, требуется рассмотреть все и проверить выполнение равенства:
Для примера рассмотрим , остальные рассматриваются аналогично:
Тетраэдр
Рассмотрим вероятностное пространство «тетраэдр». Каждое число соответствует грани тетраэдра (по аналогии с игральной костью): . , .
Рассмотрим случай: , . , , .
Для этих значений и события являются независимыми, так же, как и для других (рассматривается аналогично), поэтому эти случайные величины независимы.
Заметим, что если: , , то эти величины зависимы: положим . Тогда , , .
Честная игральная кость
Рассмотрим вероятностное пространство «честная игральная кость»: , , . Для того, чтобы показать, что величины зависимы, надо найти такие , при которых
При :
, ,
, откуда видно, что величины не являются независимыми.
См.также
- Вероятностное пространство, элементарный исход, событие
- Дискретная случайная величина
- Математическое ожидание случайной величины