Теоретический минимум по функциональному анализу за 6 семестр
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Содержание
- 1 1 A* и его ограниченность
- 2 2 Ортогональные дополнения [math] E [/math] и [math] E^* [/math]
- 3 3 Ортогональное дополнение R(A)
- 4 4 Ортогональное дополнение R(A*)
- 5 5 Арифметика компактных операторов
- 6 10 (year2012) О компактности А*
- 7 9 Размерность Ker(I-A) компактного A
- 8 10 Замкнутость R(I-A) компактного A
- 9 11 Лемма о Ker(I-A)^n компактного A
- 10 12 Условие справедливости равенства R(I-A)=E
- 11 13 Альтернатива Фредгольма-Шаудера
- 12 14 Спектр компактного оператора
- 13 15 Определение самосопряженного оператора, неравенство для (a+ib)I-A
- 14 16 Вещественность спектра ограниченного самосопряженного оператора
- 15 17 Критерий включения в резольвентное множество ограниченного самосопряженного оператора
- 16 18 Критерий включения в спектр ограниченного самосопряженного оператора
- 17 19 Локализация спектра с.с. оператора посредством чисел m- и m+
- 18 20 Спектральный радиус ограниченного самосопряженного оператора и его норма
- 19 21 Теорема Гильберта-Шмидта
- 20 22 Разложение резольвенты компактного самосопряженного оператора.
- 21 Теорема Банаха о сжимающем отображении
- 22 Дифференцирование отображений, неравенство Лагранжа.
- 23 Локальная теорема о неявном отображении
- 24 24 Локальная сходимость метода Ньютона для операторных уравнений
- 25 25 Проекторы Шаудера
- 26 26 Теорема Шаудера о неподвижной точке
- 27 6 О компактности A*, сепарабельность R(A)
- 28 7 Базис Шаудера, лемма о координатном пространстве
- 29 8 Почти конечномерность компактного оператора
- 30 23 Локальная сходимость метода простой итерации
1 A* и его ограниченность
Пусть оператор действует из в , и функционал принадлежит .
Рассмотрим .
Получили новый функционал , принадлежащий . .
. — сопряженный оператор к .
| Теорема: |
Если — линейный ограниченный оператор, то . |
2 Ортогональные дополнения и
| Определение: |
| Пусть — НП, .
— ортогональное дополнение . Аналогично, если , то . |
| Утверждение: |
. |
3 Ортогональное дополнение R(A)
| Теорема: |
. |
4 Ортогональное дополнение R(A*)
| Теорема: |
. |
5 Арифметика компактных операторов
| Определение: |
| Множество называется относительно компактным (предкомпактным), если его замыкание компактно |
| Определение: |
| Линейный ограниченный оператор называется компактным, если переводит любое ограниченное подмножество в относительно компактное множество из . |
| Утверждение: |
, (произведение, суперпозиция). Тогда:
|
10 (year2012) О компактности А*
| Определение: |
| - совокупность функций непрерывных на метрическом компакте K с равномерной нормой, т.е. |
| Теорема (Арцело-Асколи): |
\\TODO |
| Теорема: |
компактен компактен. |
9 Размерность Ker(I-A) компактного A
| Утверждение: |
— компактный оператор. Тогда |
10 Замкнутость R(I-A) компактного A
| Теорема: |
Пусть , компактен, тогда замкнуто. |
11 Лемма о Ker(I-A)^n компактного A
| Утверждение: |
Пусть , — компактный оператор.
Тогда . |
12 Условие справедливости равенства R(I-A)=E
| Утверждение: |
Пусть — компактный оператор на банаховом , .
Тогда . |
13 Альтернатива Фредгольма-Шаудера
| Теорема (альтернатива Фредгольма-Шаудера): |
Пусть — компактный оператор и . Тогда возможно только две ситуации:
|
14 Спектр компактного оператора
Рассмотрим .
- , тогда оператор необратим, и — собственное число, то есть .
- , тогда по альтернативе, оператор непрерывно обратим, то есть .
Таким образом, спектр состоит из собственных чисел, и, возможно, нуля. Теперь изучим мощность спектра:
| Теорема: |
Спектр компактного оператора не более чем счётен и его предельной точкой может быть только 0. |
15 Определение самосопряженного оператора, неравенство для (a+ib)I-A
| Определение: |
| Оператор называется самосопряжённым (), если |
,
16 Вещественность спектра ограниченного самосопряженного оператора
| Утверждение: |
Собственные числа самосопряжённого оператора вещественны |
17 Критерий включения в резольвентное множество ограниченного самосопряженного оператора
| Теорема: |
Пусть — самосопряжённый оператор. Тогда
|
18 Критерий включения в спектр ограниченного самосопряженного оператора
| Теорема: |
Пусть — самосопряжённый оператор. Тогда
|
19 Локализация спектра с.с. оператора посредством чисел m- и m+
| Определение: |
| Теорема: |
Пусть A — самосопряженный оператор
1. 2. |
20 Спектральный радиус ограниченного самосопряженного оператора и его норма
| Утверждение: |
Если — самосопряжённый оператор, то |
21 Теорема Гильберта-Шмидта
| Теорема (Гильберт, Шмидт): |
Если — самосопряжённый компактный оператор в гильбертовом пространстве , а — его (оператора) собственные подпространства, то |
22 Разложение резольвенты компактного самосопряженного оператора.
Теорема Банаха о сжимающем отображении
| Определение: |
| Пусть на замкнутом шаре , где - метрическое пространство, определён оператор . Он называется сжатием на , если такой, что для выполняется . |
| Теорема: |
(Банаха о неподвижной точке)
Пусть и является сжатием, тогда в этом шаре у оператора неподвижная точка. |
Теорема Банаха о неподвижной точке
Дифференцирование отображений, неравенство Лагранжа.
Рассмотрим , где и, кроме того, - нормированные пространства.
Пусть . Тогда, очевидно, .
Обозначим .
Def. Отображение называется дифференцируемым по Фреше в точке , если существует оператор такой, что , где несёт следующий смысл: .
Обычно, в случае дифференцируемого отображения используют следующее обозначение: . Подчеркнем, что . Аргументом является "отклонение" некоторой точки от : . А результат применения оператора: с точностью до .
Lm. (Неравенство Лагранжа) Пусть -- нормированные пространства, -- некоторый шар в и дан оператор и на всем этом шаре . Тогда для любых , где .
Локальная теорема о неявном отображении
Th.(о неявном отображении)
Пусть - шар в , а - шар в , и задан оператор .
Пусть .
Пусть - дифференциал Фреше, непрерывный как отображение переменных и .
Пусть также - непрерывно обратим.
Тогда задача о неявном отображении для c начальным решением разрешима в некоторых окрестностях точек , а именно: для любого существует единственное .
http://neerc.ifmo.ru/wiki/index.php?title=Локальная_теорема_о_неявном_отображении
24 Локальная сходимость метода Ньютона для операторных уравнений
| Утверждение: |
25 Проекторы Шаудера
— конечная -сеть.
Построим следующую функцию:
| Определение: |
| — проектор Шаудера. |
26 Теорема Шаудера о неподвижной точке
| Теорема (Шаудер, о неподвижной точке): |
Пусть — ограниченное замкнутое выпуклое подмножество B-пространства и вполне непрерывно отображает в себя.
Тогда . |
6 О компактности A*, сепарабельность R(A)
| Утверждение: |
Пусть — компактный, тогда — сепарабельно (то есть, в существует счетное всюду плотное подмножество). |
| Утверждение: |
— компактен — компактен |
7 Базис Шаудера, лемма о координатном пространстве
| Определение: |
| Базисом Шаудера в банаховом пространстве называется множество его элементов такое, что у любого в существует единственное разложение . |
Определим — это линейное пространство.
Так как ряд сходится, можно превратить в НП, определив норму как .
| Утверждение: |
Пространство относительно этой нормы — банахово. |
8 Почти конечномерность компактного оператора
| Теорема (почти конечномерность компактного оператора): |
Если — банахово пространство с базисом Шаудера, — компактный, то для всех существует разложение оператора в сумму двух компактных операторов: такое, что:
|
23 Локальная сходимость метода простой итерации
| Теорема (Локальная теорема о простой итерации): |
Пусть известно, что существует и .
Тогда существует такой шар , что если , то:
|