Гиперграфы
| Определение: |
| Гиперграфом называют такую пару , где - множество вершин, а - семейство подмножеств X, называемых гиперребрами |
Гиперграф, у которого арность гиперребрер равна двум( т.е. каждое гиперребро содержит только две вершины), является графом.
рис.1
Частный случай гипергафа, где
Основные понятия гиперграфов
| Определение: |
| Путем между двумя гиперребрами и гиперграфа называется последовательность гиперребер , таких что :
1) и 2) |
| Определение: |
| Гиперграф называется связным тогда и только тогда, когда существует путь между каждой парой гиперребер. |
Пусть - связный, сокращенный набор гиперребер, и - элементы и .
| Определение: |
| называется сочленением , если при его удалении из всех гиперребер , множество разрывается. |
На рис.2 является сочленением .
Матрица инцидентности
Пусть дан гиперграф , где и . Любой гиперграф может задаваться матрицей инцидентности размером , где
Так например, для гиперграфа на рис.1 мы имеем такую матрицу инцидентности
Ацикличность гиперграфа
| Определение: |
| Циклом в называется последовательность гиперребер удовлетворяющим следующим свойствам:
1) 2) выполняется , где для которых выполняется |
Для определения ацикличного гиперграфа введем определение уха гиперграфа, а также редукцию GYO(Graham-Yu-Ozsoyoglu).
| Определение: |
| Ухом(по англ. ear) гиперграфа называется такое гиперребро , что его вершины можно разделить на две группы:
1) Вершины, которые принадлежат только гиперребру и никакому более. 2) Вершины, которые принадлежат другим гиперребрам. |
| Определение: |
| Определение редукции GYO содержит всего два шага:
1) Устранение вершин, которые содержатся только в одном гиперребре. 2) Удаление гиперребер, которые содержатся в других. |
То есть, мы удаляем вершины которые содержатся в ухе, и ни в каком более гиперребре. Затем удаляем гиперребра, оставляя другие вершины.
| Утверждение: |
Если гиперграф сводится к пустому с помощью редукции GYO, тогда он ацикличный. |
С помощью редукции GYO удаляются вершины A, B и C (т.к они содержатся только в одном своем гиперребре), а затем удаляем оставшиеся внутренние гиперребра.

