Числа Эйлера I и II рода
Числа Эйлера I рода (Eulerian numbers) — количество перестановок чисел от 1 до n таких, что в каждой из них существует ровно m подъемов. Числа Эйлера I рода обозначают как или же .
| Определение: |
| Пусть и - элементы некоторой перестановки порядка причем . Тогда пара называется подъемом (ascent) данной перестановки. |
Вывод рекуррентной формулы
Пусть у нас есть некая перестановка . Тогда операцией вставки элемента с номером n в какую-либо из позиций мы получим перестановок вида . Далее рассмотрим два случая:
1. Количество подъемов в перестановке равно количеству подъемов в . Этого можно добиться, вставляя элемент на самое первое место в (всего возможностей) или перед последним последним элементом каждого подъема(еще раз).
2. Количество подъемов в новой перестановке на один больше предыдущего количества. Этого эффекта добиваемся вставкой элемента между последним символом любого подъема и (если - не подъем) или после элемента перестановки со значением . Таких элементов, как не трудно догадаться, будет .
Тогда рекуррентная формула имеет вид:
Примем также следующие начальные значения:
, если или если ;