Схема Бернулли
Версия от 12:46, 19 декабря 2012; Sergej (обсуждение | вклад)
Определение
| Определение: |
| Схемой Бернулли называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех в каждом испытании происходит с одной и той же вероятностью p ∈ (0, 1), а неудача — с вероятностью q = 1 − p. |
| Теорема: |
Для любого k = 0, 1, . . . , n вероятность получить в n испытаниях k успехов равна P( = k) = |
| Доказательство: |
| Событие A = { = k} означает, что в n испытаниях схемы Бернулли произошло ровно k успехов. Рассмотрим один элементарный исход из события A: когда первые k испытаний завершились успехом, остальные неудачей. Поскольку испытания независимы, вероятность такого элементарного исхода равна Другие элементарные исходы из события A отличаются лишь расположением k успехов на n местах. Есть ровно cпособов расположить k успехов на n местах. Поэтому событие A состоит из элементарных исходов, вероятность каждого из которых равна |
Пример
Правильная монета подбрасывается 10 раз. Найти вероятность того, что герб выпадет от 4 до 6 раз.
Вычислим отдельно вероятности получить 4, 5 и 6 гербов после десяти подбрасываний монеты.
P( = 4) = ~=~ 0,205;
P( = 5) = ~=~ 0,246;
P( = 6) = ~=~ 0,205;
Сложим вероятности несовместных событий: P(4)~<=~ )~<=~6) = P( = 4) + P( = 5) + P( = 6) ~=~ 0,656.