Схемная сложность и класс P/poly
Версия от 17:52, 14 апреля 2012; Vincent (обсуждение | вклад)
Определения
| Определение: |
существует логическая схема с входами и одним выходом такая, что:
|
| Определение: |
Пусть C — сложностный класс, f — функция. Тогда существуют программа p, удовлетворяющая ограничениям C:
|
| Определение: |
| Пусть . Тогда . |
Теоремы
| Теорема: |
. |
| Доказательство: |
| Машина Тьюринга m такая, что . В теореме Кука мы показали, что для машины Тьюринга можно составить логическую схему. Отсюда следует, что . |
| Теорема: |
Схемная сложность полином . |
| Доказательство: |
|
схемная сложность полином. Тогда . Запишем программу : returnТеорема выполняется. |
| Теорема: |
схемная сложность полином. |
| Доказательство: |
| Пусть . Тогда существуют — подсказки. Зафиксируем n. Пусть подсказка позволяет определить, удовлетворяет ли вход x длины n логической схеме. Зашьем эту подсказку в логическую схему . Теперь логическая удовлетворяет только словам из языка. |