Остаток формулы Тейлора в интегральной форме
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
| Утверждение: |
Пусть в окрестности точки функция раз дифференцируема и её -я производная интегрируема. Тогда в окрестности точки .
Эта формула называется формулой Тейлора с записью остатка в интегральной форме. |
|
Докажем по индукции. База: . . Заметим, что это формула Ньютона-Лейбница:
Проделаем шаг : Так как формула верна для то можно записать как . Теперь преобразуем интеграл, интегрируя по частям: (внося под знак дифференциала) По индукции получаем, что формула верна для любого . |