Теорема Лагранжа
Версия от 17:00, 7 мая 2014; Shersh (обсуждение | вклад)
Теорема Лагранжа
| Теорема (Лагранж): |
| Доказательство: |
| Пусть — конечная группа, а — ее подгруппа. Любой элемент входит в некоторый смежный класс по ( входит в ). Мощность каждого класса равна , т.к. отображение . Таким образом, вся G распадается на непересекающиеся смежные классы одинаковой мощности. Отсюда очевидно, что делится на . |
Следствие: . Достаточно рассмотреть циклическую подгруппу : ее порядок равен порядку элемента , но .
Следствие:(теорема Ферма) Рассматривая в качестве группу , получаем при :