Обсуждение участницы:Анна
Перечисления графов
Помеченные графы
| Определение: |
| Помеченный граф с вершинами — граф, у которого каждая вершина помечена целым числом от до . |
Более формально определить это понятие можно так: назовем распределением меток в графе с вершинами биекцию между множеством вершин графа и множеством . Тогда помеченным графом называется пара .
| Определение: |
| Два помеченных графа и изоморфны, если существует изоморфизм между и , сохраняющий распределение меток. |
Все помеченные графы с тремя вершинами показаны на рисунке 1. различных графа с вершинами приводят к различным помеченным графам.
Для нахождения числа помеченных графов с вершинами нужно заметить, что каждое из возможных ребер либо принадлежит графу, либо нет.
| Теорема (1): |
Число помеченных графов с вершинами равно . |
Следовательно, число помеченных графов с ребрами равно .
| Теорема (Кэли): |
Число помеченных деревьев с вершинами равно . |
| Теорема (2): |
Данный граф можно пометить способами. |
| Доказательство: |
|
Приведем набросок доказательства. Пусть — группа подстановок, действующая на множестве . Для всякого элемента орбитой элемента называется подмножество множества , состоящее из всех элементов таких, что для некоторой подстановки из . Стабилизатором элемента называется подгруппа группы , состоящая из всех подстановок из , оставляющих элемент неподвижным. Теорема является следствием соотношения и его интерпретации в настоящем контексте. |
Рассмотрим пример. На рисунке 2 изображены все помеченные деревья с четырьмя вершинами. Всего их . Среди них изоморфны цепи и — графу . Порядок группы равен . Порядок группы . Так как , то имеем и .