Группа
Версия от 09:58, 30 июня 2010; RomanSatyukov (обсуждение | вклад)
| Определение: |
| Моноид называется группой, если для каждого элемента существует обратный:
|
| Утверждение (О единственности обратного элемента): |
В группу для каждого элемента существует единственный обратный элемент. |
|
Действительно, пусть и — два обратных к элемента. Тогда имеем: |
Примером группы является множество действительных чисел c операцией сложения (но не умножения -- 0 не имеет в этом случае обратного элемента).
Абелева группа
| Определение: |
| Группа называется абелевой, если ее операция коммутативна: для любых выполнено . Абелевы группы иногда называют аддитивными, обозначая групповую операцию как , обратный элемент как , нейтральный как . При этом запись понимают как . |
Примером абелевой(аддитивной) группы является группа вещественных чисел с операцией сложения. Примером неабелевой — группа обратимых матриц с операцией обычного матричного умножения.
Конечная группа
| Определение: |
| Группа называется конечной, если множество ее элементов конечно. Мощность множества элементов группы называют порядком группы и обозначают . |