Отношение рёберной двусвязности
Содержание
Реберная двусвязность
| Определение: |
| Две вершины и графа называются реберно двусвязными, если между этими вершинами существуют два реберно непересекающихся пути. |
| Теорема: |
Отношение реберной двусвязности является отношением эквивалентности на вершинах. |
| Доказательство: |
|
Пусть - отношение реберной двусвязности. Рефлексивность: (Очевидно) Симметричность: (Очевидно) Транзитивность: и Доказательство: Пусть из в есть два реберно не пересекающихся пути. Назовем эти пути и . Их объединение будет реберно-простым циклом. Обозначим его за . Вершина реберно двусвязна с . Пусть вершины и - первые пересечения и с соответственно.
Наличие двух таких реберно не пересекающихся путей очевидно, а значит и реберно двусвязный. |
Компоненты реберной двусвязности
| Определение: |
| Компонентами реберной двусвязности графа, называют его подграфы, множества вершин которых - классы эквивалентности реберной двусвязности, а множества ребер - множества ребер из соответствующих классов эквивалентности. |
См. также
Отношение вершинной двусвязности
См. также
Визуализатор - компоненты двусвязности
Литература
- Харари Фрэнк Теория графов = Graph theory/Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 60 с. — ISBN 5-354-00301-6