Интерактивные протоколы. Класс IP. Класс AM
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Содержание
Определения
| Определение: |
Интерактивным протоколом (англ. interactive protocol) , разрешающим язык , называется абстрактная машина (см. рисунок), моделирующая вычисления как обмен сообщениями между двумя программами (где означает и означает ), такими, что
|
Замечания:
- и по очереди становятся активными. активизируется первым. В течение работы выполняет вычисления, используя вход, очередные данные с вероятностной ленты и сообщение, пришедшее от , и пишет запрос . Как только написал сообщение, он дизактивируется, и становится активным, если протокол не завершился. Любая машина может завершить выполнение протокола просто не посылая сообщение во время своей активной фазы. принимает (или отвергает) вход, выводит true (или false) и завершает выполнение протокола. Время работы — это сумма времен работы, затраченных в течение активной фазы, и это время ограничено полиномом от длины входа.
- , обменивающийся сообщениями с фиксированным , обозначим .
- Для того, чтобы принял слово, старается максимизировать вероятность , выбирая нужные ответы на запросы.
- Так как мы не ограничиваем в вычислительной мощности, то он может работать бесконечное время, а значит не получит ответ на какой-то вопрос. Но хочет, чтобы принял слово, значит нужно выбирать "хорошие" протоколы, чтобы таких ситуаций не появлялось.
- может быть и вероятностной и детерминированной машиной Тьюринга. Так как он имеет неограниченные вычислительные ресурсы, то на каждом ходу он может выбрать такие вероятностные данные и произвести вычисления с ними, что они максимизируют вероятность принятия слова .
- С другой стороны, для важно быть вероятностной программой, так как иначе он будет принимать или отвергать слова с вероятностью . И пользуясь предыдущим фактом, получим, что всегда принимает слова из .
- Так как может писать и читать полиномиальное число символов, то длина сообщений между и есть полином от длины .
Интерактивные протоколы делятся на два типа в зависимости от доступа к вероятностной ленте :
- public coins (русск. открытые монеты) — может видеть вероятностную ленту ;
- private coins (русск. закрытые монеты)— не может видеть вероятностную ленту .
| Определение: |
| Если для интерактивного протокола выполняется , то говорят, что он обладает свойством completeness (русск. полнота) равным . |
Если (perfect completeness (русск. идеальная полнота)), то это означает, что никакое верное утверждение не отклоняется .
| Определение: |
| Если для интерактивного протокола выполняется , то говорят, что он обладает свойством soundness (русск. достоверность) равным . |
Если (perfect soundness (русск. идеальная достоверность)), то это означет, что если утверждение ложно, то никакой не может убедить , что утверждение истино. В этом случае мы получем класс . Потому что тогда и только тогда, если существует последовательность случайных вопросов, генерируемых , и последовательность ответов , которые убеждают в том, что . Обратное утверждение сохраняется по предположению идеальной достоверности.
| Определение: |
(Interactive Polynomial time) интерактивный протокол
|
| Определение: |
То есть — множество языков разрешимых интерактивным протоколом, таких, что число сообщений ограничено полиномом от длины слова и должен решить лежит ли слово в языке с вероятностью ошибки не более .
Язык (Arthur–Merlin games) отличается от лишь тем, что может видеть вероятностную ленту .
| Определение: |
интерактивный протокол
|
| Определение: |
Соотношения с другими классами теории сложности
| Теорема: |
. |
| Доказательство: |
| сам по себе является вероятностной машиной Тьюринга и поэтому может разрешить язык из не прибегая к общению с . |
| Теорема: |
. |
| Доказательство: |
|
Для разрешения языка из будем использовать следующий протокол: будет проверять на принадлежность слова языку, используя сертификат, который он запросит у . Так как не ограничен в вычислительной мощности, он может подобрать подходящий сертификат и именно его и сообщит, так как он заинтересован в том, чтобы принял слово. Для этого требуется лишь один раунд интерактивного протокола. |
Язык GNI
| Определение: |
| расшифровывается как Graph Non Isomorphism. Это язык пар неизоморфных друг другу графов. графы и не изоморфны . |
| Теорема: |
. |
| Доказательство: |
|
Пусть на вход подали пару графов и нужно определить изоморфны ли они. Будем использовать следующий алгоритм для :
Покажем, что это удовлетворяет ограничениям на . Во-первых, очевидно, что число раундов не превосходит двух. Рассмотрим теперь два случая:
|