Оценка сложности вычисления гиперобъема
Постановка задачи
- точка в -мерном пространстве.
Точка доминирует точку (), если .
- множество из точек в -мерном пространстве таких, что - никакая точка не доминируется другой точкой из этого множества.
- гиперобъем множества .
В частности, если , то .
Утверждается, что точное вычисление значения гиперобъема множества из точек -мерного пространства является #P-трудной задачей, однако допускает эффективную аппроксимацию, а именно может быть аппроксимировано за
- полином от количество параметров,
- полином от количества решений,
- полином от качества аппроксимации.
#P-трудность задачи вычисления гиперобъема
Доказательство будет состоять в сведении задачи #MON-CNF (Satisfability problem for monotone boolean formulas).
| Определение: |
| задача #MON-CNF -- задача вычисления количества удовлетворяющих подстановок для монотонной булевой формулы, записанной в КНФ где клозы |
Задача #MON-CNF является #P-трудной
Сведем ее к задаче вычисления гиперобъема.
для MON-CNF формулы
рассмотрим ее отрицание
и для каждого клоза построим гиперкуб
где
например, гиперкубу
будет соответствовать клоз
а клоз