Примеры матроидов — различия между версиями
| Строка 29: | Строка 29: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
| − | Пусть <tex>G = \langle X, Y, E \rangle</tex> - двудольный граф. Тогда <tex>M = \langle X, I = \mathcal{f} A \subset X \mid \exists парасочетание M: X \cap ends(M) = A \mathcal {g} \rangle </tex> называют '''трансверсальным матроидом.''' | + | Пусть <tex>G = \langle X, Y, E \rangle</tex> - двудольный граф. Тогда <tex>M = \langle X, I = \mathcal{f} A \subset X \mid \exists </tex> парасочетание <tex> M: X \cap ends(M) = A \mathcal {g} \rangle </tex> называют '''трансверсальным матроидом.''' |
}} | }} | ||
Версия 01:49, 14 июня 2011
Графовый матроид
| Определение: |
| Пусть - неориентированный граф. Тогда , где состоит из всех ацикличных множеств ребер (то есть являющихся лесами), называют графовым (графическим) матроидом. |
| Лемма: |
Графовый матроид является матроидом. |
| Доказательство: |
|
Проверим выполнение аксиом независимости: 1) Пустое множество является ациклическим, а значит входит в . 2) Очевидно, что любой подграф леса, так же является лесом, а значит входит в . 3) В графе как минимум две компоненты связанности, иначе являлся бы остовным деревом и не существовало бы ациклического множества с большей мощностью. Допустим в не существует ребра, соединяющего две различные компоненты связанности из , значит любая компонента связанности из целиком вершинно-входит в какую-либо компоненту из . Рассмотрим любую компоненту связанности Q из , у неё вершин и рёбер. Теперь рассмотрим все компоненты связанности из вершинно-входящие в , пусть их штук, тогда суммарное кол-во рёбер из равно что не превосходит (кол-во рёбер в ). Просуммируем неравенство по всем компонентам связанности из и получим что протеворечит условию. Значит предположение не верно и в существует искомое ребро из разных компонент связанности . |
Трансверсальный матроид
| Определение: |
| Пусть - двудольный граф. Тогда парасочетание называют трансверсальным матроидом. |
| Лемма: |
Трансверсальный матроид является матроидом. |
| Доказательство: |
|
Проверим выполнение аксиом независимости: 1) Пустое парасочетание удовлетворяет условию. 2) Подмножество парасочетания также является парасочетанием. Удалим из исходного парасочетания ребра, концами которых являются вершины из множества . Оставшееся множество ребер будет являться парасочетанием, которое обозначим за . И будет выполняться условие , что значит, . 3) |