Обратный оператор — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
| Строка 1: | Строка 1: | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
{{Определение | {{Определение | ||
|definition=Пусть <tex>\mathcal{A}:X \rightarrow X</tex> — автоморфизм. Тогда <tex>\mathcal{A}^{-1}: X \rightarrow X</tex> называется '''обратным оператором''' к <tex>\mathcal{A}</tex>, если <tex>\mathcal{A} \cdot \mathcal{A}^{-1} = \mathcal{A}^{-1} \cdot \mathcal{A} = J</tex>. | |definition=Пусть <tex>\mathcal{A}:X \rightarrow X</tex> — автоморфизм. Тогда <tex>\mathcal{A}^{-1}: X \rightarrow X</tex> называется '''обратным оператором''' к <tex>\mathcal{A}</tex>, если <tex>\mathcal{A} \cdot \mathcal{A}^{-1} = \mathcal{A}^{-1} \cdot \mathcal{A} = J</tex>. | ||
Текущая версия на 19:29, 4 сентября 2022
| Определение: |
| Пусть — автоморфизм. Тогда называется обратным оператором к , если . |
| Теорема (Критерий существования ): |
Для нужно и достаточно, чтобы в некотором базисе |
| Доказательство: |
| Доказывается в конспекте Обратная матрица |
| Теорема (Критерий существования ): |
Для нужно и достаточно одного из двух условий:
|
| Доказательство: |
|
Первое и второе утверждение равносильны в силу равенства имеет только тривиальное решение |
Ссылки
Источники
- Анин конспект