Лемма Римана-Лебега — различия между версиями
м |
|||
| Строка 1: | Строка 1: | ||
| + | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
| + | |+ | ||
| + | |-align="center" | ||
| + | |'''НЕТ ВОЙНЕ''' | ||
| + | |-style="font-size: 16px;" | ||
| + | | | ||
| + | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
| + | |||
| + | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
| + | |||
| + | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
| + | |||
| + | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
| + | |||
| + | ''Антивоенный комитет России'' | ||
| + | |-style="font-size: 16px;" | ||
| + | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
| + | |-style="font-size: 16px;" | ||
| + | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
| + | |} | ||
| + | |||
[[Теорема Фейера|<<]][[Сходимость ряда Фурье в индивидуальной точке|>>]] | [[Теорема Фейера|<<]][[Сходимость ряда Фурье в индивидуальной точке|>>]] | ||
Версия 09:00, 1 сентября 2022
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
| Лемма (Риман-Лебег): |
Пусть , тогда при коэффициенты ряда Фурье , . |
| Доказательство: |
|
. Пусть — полином наилучшего приближения функции , степени, не большей , в пространстве . Так как это сумма вида , то, по свойству тригонометрических функций, выполняется: . . Тогда , то есть . По обобщенной теореме Вейерштрасса, , следовательно, . Доказательство для аналогично приведенному выше. |
Следует иметь в виду, что не стремится к 0, поэтому грубая оценка, что ни к чему не ведет. То, что лемма Римана-Лебега была написана для -периодичных функций не имеет принципиального значения, так как на самом деле справедлив общий факт:
| Лемма (Риман-Лебег): |
Пусть , тогда при . |
| Доказательство: |
|
На самом деле обе леммы равносильны.
|
Из леммы Римана-Лебега получается важный результат, называемый принципом локализации Римана рядов Фурье.
| Теорема (Риман, Принцип локализации): |
Пусть , , .
Пусть также в -окрестности точки выполняется , тогда |
| Доказательство: |
|
Для удобства записи, в силу -периодичности, сдвинем точку в ноль. . . Разобьем данные интегралы на три части: . Рассмотрим разность двух сумм: (интегралы по участку равны). Рассмотрим, например, первый из четырех интегралов:
. Так как функции и суммируемы на , то, по только что доказанной лемме, оба интеграла стремятся к нулю при . Аналогично поступаем с тремя остальными частями разности. |