Дисперсия случайной величины — различия между версиями
Minish144 (обсуждение | вклад) м (Лишняя скобка во втором слогаемом во второй строке) |
|||
| Строка 1: | Строка 1: | ||
| + | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
| + | |+ | ||
| + | |-align="center" | ||
| + | |'''НЕТ ВОЙНЕ''' | ||
| + | |-style="font-size: 16px;" | ||
| + | | | ||
| + | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
| + | |||
| + | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
| + | |||
| + | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
| + | |||
| + | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
| + | |||
| + | ''Антивоенный комитет России'' | ||
| + | |-style="font-size: 16px;" | ||
| + | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
| + | |-style="font-size: 16px;" | ||
| + | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
| + | |} | ||
| + | |||
| + | |||
{{Определение | {{Определение | ||
Версия 06:26, 1 сентября 2022
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
| Определение: |
| Дисперсией случайной величины (англ. variance) называется математическое ожидание квадрата отклонения этой случайной величины от ее математического ожидания: , где — случайная величина, а — символ, обозначающий математическое ожидание |
Дисперсия характеризует разброс случайной величины вокруг ее математического ожидания.
Корень из дисперсии называется средним квадратичным отклонением. Оно используется для оценки масштаба возможного отклонения случайной величины от ее математического ожидания.
| Утверждение: |
В силу линейности математического ожидания справедлива формула |
|
|
Содержание
Линейность
| Теорема: |
Если и — независимые случайные величины, то: |
| Доказательство: |
|
Свойства
- Дисперсия любой случайной величины неотрицательна:
- Если дисперсия случайной величины конечна, то конечно и её математическое ожидание
- Если случайная величина равна константе, то её дисперсия равна нулю:
- Дисперсия суммы двух случайных величин равна:
- , где — их ковариация
- , где — константа. В частности,
- , где — константа.
Связь с центральным моментом
| Определение: |
| Центральным моментом (англ. central moment) -ого порядка случайной величины называется величина , определяемая формулой . |
Заметим, что если равно двум, то . Таким образом, дисперсия является центральным моментом второго порядка.
Пример
Рассмотрим простой пример вычисления математического ожидания и дисперсии.
| Задача: |
| Найти математическое ожидание и дисперсию числа очков, выпавших на честной игральной кости с первого броска. |
Вычислим математическое ожидание:
Вычислим дисперсию:
См. также
Источники информации
- Романовский И. В. Дискретный анализ, 3-е изд.: Издательский дом "Невский диалект", 2003 — стр. 68.
- Википедия — Дисперсия случайной величины
- Wikipedia — Variance
- EXPonenta.ru — Числовые характеристики случайных величин