Приближение непрерывной функции полиномами на отрезке — различия между версиями
(Свернута сумма) |
Rybak (обсуждение | вклад) (→Постановка задачи) |
||
| Строка 5: | Строка 5: | ||
В курсе математического анализа уже рассмотрено два аппарата приближения функции, причём оба имеют локальный зарактер. А именно, мы можем приближать функцию с помощью формулы Тейлора или с помощью интерполяционного полинома: | В курсе математического анализа уже рассмотрено два аппарата приближения функции, причём оба имеют локальный зарактер. А именно, мы можем приближать функцию с помощью формулы Тейлора или с помощью интерполяционного полинома: | ||
:<tex>f(x) = \sum\limits_{k = 0}^{n} \frac{f^{(k)}(x_0)}{k!}\cdot(x - x_0)^k + o((x - x_0)^n)</tex> | :<tex>f(x) = \sum\limits_{k = 0}^{n} \frac{f^{(k)}(x_0)}{k!}\cdot(x - x_0)^k + o((x - x_0)^n)</tex> | ||
| − | :<tex>f(x) = \sum\limits_{k = 0}^{n} f(x_k)\phi_k(x) + \frac{f^{(n + 1)}(c_x)}{(n + 1)!} \cdot \omega_n(x)</tex> | + | :<tex>f(x) = \sum\limits_{k = 0}^{n} f(x_k)\phi_k(x) </tex><tex dpi = "160">+ \frac{f^{(n + 1)}(c_x)}{(n + 1)!}</tex><tex> \cdot \omega_n(x)</tex> |
Причём оба способа дают хорошую точность при хороших дифференциальных свойствах функции. | Причём оба способа дают хорошую точность при хороших дифференциальных свойствах функции. | ||
Версия 04:12, 26 ноября 2010
Постановка задачи
В курсе математического анализа уже рассмотрено два аппарата приближения функции, причём оба имеют локальный зарактер. А именно, мы можем приближать функцию с помощью формулы Тейлора или с помощью интерполяционного полинома:
Причём оба способа дают хорошую точность при хороших дифференциальных свойствах функции.
Можно поставить иную задачу, которая является намного более сложной: пусть функция непрерывна на отрезке . Существует ли некоторый полином (неважно, какой степени) такой, что ?
Принципиальное отличие этой задачи - требование хорошей точности для всего отрезка при минимальных ограничениях на функцию.
Заметим, что непрерывность функции является необходимым условием. Действительно, пусть такова, что полином найдётся. Покажем, что необходимо непрерывна:
- есть полином , "обслуживающий" на всём отрезке.
- .
Но полином непрерывен, а значит, .
Тогда , то есть, непрерывна в точке .
Положительный ответ на поставленный вопрос впервые был дан Вейерштрассом.
Теорема о существовании искомого полинома
| Теорема (Вейерштрасс): |
Пусть функция - непрерывна на . Тогда - полином, такой, что |
| Доказательство: |
|
Рассмотрим функцию - непрерывную на . Определим полиномы:
Заметим, что . Далее, для сокращения записи положим .
Выше мы доказали, что , поэтому к последней сумме применима теорема о выпуклой мажоранте модуля непрерывности:
Итак, . Оценим сумму в правой части сверху, тогда при замене суммы оценкой правая часть только возрастет(в силу возрастания модуля непрерывности). По неравенству Коши для сумм Вставим полученное неравенство в оценку: (все эти преобразования были нужны, потому что суммы с модулем трудно сворачиваются). Покажем теперь с помощью метода производящих функций, что . Для этого рассмотрим полином , где - произвольная конечная числовая последовательность (такой полином называют производящей функцией). Заметим, что и поэтому
Положим теперь и рассмотрим производящую функцию С целью упрощения дальнейших выкладок обозначим . Т. к. , то Вернемся к свертыванию суммы: Первые две суммы в скобках можно посчитать по уже известным формулам, полученным из производящей функции, для вычисления третьей заметим, что .
|