Обсуждение участницы:Анна — различия между версиями
Анна (обсуждение | вклад) (→Теорема перечисления Пойа) |
Анна (обсуждение | вклад) (→Теорема перечисления Пойа) |
||
| Строка 58: | Строка 58: | ||
Пусть <tex>A</tex> {{---}} группа подстановок, действующая на множестве <tex>X</tex> с орбитами <tex>\Theta_{1}, \Theta_{2} \cdots \Theta_{n}</tex> и <tex>\omega</tex> {{---}} функция, приписывающая веса каждой орбите (весовая функция). Более того, <tex>\omega</tex> определяется на <tex>X</tex> так, что <tex>\omega(x) = \omega(\Theta_{i})</tex>, если <tex>x \in \Theta_{i}</tex>. Тогда сумма весов орбит равна <tex>|A| \sum\limits_{i=1}^n \omega(\Theta_{i}) = \sum\limits_{\alpha \in A} \sum\limits_{x = \alpha x} \omega(x)</tex>. | Пусть <tex>A</tex> {{---}} группа подстановок, действующая на множестве <tex>X</tex> с орбитами <tex>\Theta_{1}, \Theta_{2} \cdots \Theta_{n}</tex> и <tex>\omega</tex> {{---}} функция, приписывающая веса каждой орбите (весовая функция). Более того, <tex>\omega</tex> определяется на <tex>X</tex> так, что <tex>\omega(x) = \omega(\Theta_{i})</tex>, если <tex>x \in \Theta_{i}</tex>. Тогда сумма весов орбит равна <tex>|A| \sum\limits_{i=1}^n \omega(\Theta_{i}) = \sum\limits_{\alpha \in A} \sum\limits_{x = \alpha x} \omega(x)</tex>. | ||
|proof= | |proof= | ||
| − | Уже упоминалось о том, что порядок <tex>|A|</tex> группы <tex>A</tex> равен <tex>|A(x)| \cdot |\Theta(x)|</tex> для любого <tex>x \in X</tex>, где <tex>A(x)</tex> {{---}} стабилизатор элемента <tex>x</tex>. | + | Уже упоминалось о том, что порядок <tex>|A|</tex> группы <tex>A</tex> равен <tex>|A(x)| \cdot |\Theta(x)|</tex> для любого <tex>x \in X</tex>, где <tex>A(x)</tex> {{---}} стабилизатор элемента <tex>x</tex>. Так как весовая функция постоянна на элементах данной орбиты, то справедливо равенство <tex>|\Theta_{i}| \omega(\Theta_{i}) = \sum\limits_{x \in \Theta_{i}}\omega(x)</tex> для каждой орбиты <tex>\Theta_{i}</tex>. Домножив второе равенство на первое и сократив, получаем <tex>|A| \omega(\Theta_{i}) = \sum\limits_{x \in \Theta_{i}}|A(x)|\omega(x)</tex>. Суммируя по всем орбитам, находим <tex>|A|\sum\limits_{i=1}^n \omega(\Theta_{i}) = \sum\limits_{i=1}^n \sum\limits_{x \in \Theta_{i}}|A(x)|\omega(x)</tex>, откуда непосредственно следует доказываемое соотношение. |
}} | }} | ||
Версия 23:58, 27 декабря 2015
Перечисления графов
Помеченные графы
| Определение: |
| Помеченный граф с вершинами — граф, у которого каждая вершина помечена целым числом от до . |
Более формально определить это понятие можно так: назовем распределением меток в графе с вершинами биекцию между множеством вершин графа и множеством . Тогда помеченным графом называется пара .
| Определение: |
| Два помеченных графа и изоморфны, если существует изоморфизм между и , сохраняющий распределение меток. |
Все помеченные графы с тремя вершинами показаны на рисунке 1. различных графа с вершинами приводят к различным помеченным графам.
Для нахождения числа помеченных графов с вершинами нужно заметить, что каждое из возможных ребер либо принадлежит графу, либо нет.
| Теорема (1): |
Число помеченных графов с вершинами равно . |
Следовательно, число помеченных графов с ребрами равно .
| Теорема (Кэли): |
Число помеченных деревьев с вершинами равно . |
| Теорема (2): |
Данный граф можно пометить способами. |
| Доказательство: |
|
Приведем набросок доказательства. Пусть — группа подстановок, действующая на множестве . Для всякого элемента орбитой элемента называется подмножество множества , состоящее из всех элементов таких, что для некоторой подстановки из . Стабилизатором элемента называется подгруппа группы , состоящая из всех подстановок из , оставляющих элемент неподвижным. Теорема является следствием соотношения и его интерпретации в настоящем контексте. |
Рассмотрим пример. На рисунке 2 изображены все помеченные деревья с четырьмя вершинами. Всего их . Среди них изоморфны цепи и — графу . Порядок группы равен . Порядок группы . Так как , то имеем и .
Теорема перечисления Пойа
Пойа показал, как получить формулу, перечисляющую орбиты в соответствии с весами и зависящую от циклической структуры подстановок данной группы.
| Теорема: |
Пусть — группа подстановок, действующая на множестве с орбитами и — функция, приписывающая веса каждой орбите (весовая функция). Более того, определяется на так, что , если . Тогда сумма весов орбит равна . |
| Доказательство: |
| Уже упоминалось о том, что порядок группы равен для любого , где — стабилизатор элемента . Так как весовая функция постоянна на элементах данной орбиты, то справедливо равенство для каждой орбиты . Домножив второе равенство на первое и сократив, получаем . Суммируя по всем орбитам, находим , откуда непосредственно следует доказываемое соотношение. |