Квантовые конечные автоматы — различия между версиями
(→Определение) |
(→Описание) |
||
| Строка 34: | Строка 34: | ||
* НКА. Из-за свойство НКА в векторе <tex>q</tex> и в столбцах матриц <math>\{U_\alpha\}</math> может находиться несколько <tex>1</tex>. Если в этом случаи рассмотреть [[Построение по НКА эквивалентного ДКА, алгоритм Томпсона|алгоритм Томпсона]], то построенные на их основе Квантовые конечные автоматы не будут эквивалентны. Эта проблема является одно научно-исследовательских задач в теории ККА. | * НКА. Из-за свойство НКА в векторе <tex>q</tex> и в столбцах матриц <math>\{U_\alpha\}</math> может находиться несколько <tex>1</tex>. Если в этом случаи рассмотреть [[Построение по НКА эквивалентного ДКА, алгоритм Томпсона|алгоритм Томпсона]], то построенные на их основе Квантовые конечные автоматы не будут эквивалентны. Эта проблема является одно научно-исследовательских задач в теории ККА. | ||
| − | * Вероятностный конечный автомат. Для его построения нужно всего лишь в ККА использовать [https://ru.wikipedia.org/wiki/%D0%A1%D1%82%D0%BE%D1%85%D0%B0%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0 | + | * Вероятностный конечный автомат. Для его построения нужно всего лишь в ККА использовать стохастические матрицы<ref>[https://ru.wikipedia.org/wiki/%D0%A1%D1%82%D0%BE%D1%85%D0%B0%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0 Википедия {{---}}Стохастическая матрица]</ref> для <math>\{U_\alpha\}</math> и вектор вероятностей состояний для <tex>q</tex>. Одно из свойств <tex>q</tex> {{---}} сумма всех элементов равна <tex>1</tex> и для того чтобы во всех переходах сохранялось это свойство и нужны стохастические матрицы. |
=== Одномерный квантовый конечный автомат=== | === Одномерный квантовый конечный автомат=== | ||
Авторы одномерного (англ. ''Measure-one'', ''1-way'') ККА - Cris Moore и James P. Crutchfield (2000). Главное свойство {{---}} допускать [[Регулярные языки: два определения и их эквивалентность | регулярный язык]]. | Авторы одномерного (англ. ''Measure-one'', ''1-way'') ККА - Cris Moore и James P. Crutchfield (2000). Главное свойство {{---}} допускать [[Регулярные языки: два определения и их эквивалентность | регулярный язык]]. | ||
| − | В таком виде конечный автомат с <tex>N</tex> состояниями представляется в виде [ | + | В таком виде конечный автомат с <tex>N</tex> состояниями представляется в виде [[Кубит | кубита]] <math>|\psi\rangle</math> c N-состояниями. Такой кубит <tex>\in CP^N</tex> и приносит в это пространство метрику <math>\Vert\cdot\Vert</math>. |
Матрицы смежности остаются унитарными, а переход в новое сосояние по символу <tex>\alpha</tex> : | Матрицы смежности остаются унитарными, а переход в новое сосояние по символу <tex>\alpha</tex> : | ||
:<math>|\psi'\rangle</math> = <math>U_\alpha |\psi\rangle</math>. | :<math>|\psi'\rangle</math> = <math>U_\alpha |\psi\rangle</math>. | ||
| − | Переход в допускающее состояние производиться [https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D0%B5%D0%BA%D1%82%D0%BE%D1%80_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0) | + | Переход в допускающее состояние производиться матрицей-проектором<ref>[https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D0%B5%D0%BA%D1%82%D0%BE%D1%80_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0) Википедия {{---}} Проектор]</ref> <tex> P [N \times N]</tex>. |
Вероятность <tex>Pr(s)</tex>, где <tex>s = (a_0,a_1,\cdots,a_k) </tex> равна : | Вероятность <tex>Pr(s)</tex>, где <tex>s = (a_0,a_1,\cdots,a_k) </tex> равна : | ||
Версия 00:35, 11 января 2015
Неформально говоря квантовый конечный автомат — это квантовый аналог конечного автомата, который использует квантовые гейты. Главной особенностью таких автоматов то, что они могут разрешать некоторый язык за экспоненциально меньший размер, чем обычные конечные автоматы.
Содержание
Определение
| Определение: |
Квантовый конечный автомат (ККА) (англ. Quantum finite automata, QFA) — это кортеж : , где
|
Кроме того, ККА является частным случаем Геометрического конечного автомата и Топологического конечного автомата[1].
Принцип работы
- На вход подается строчка .
- На выходе мы получаем число , являющееся вероятностью данного конечного автомата быть в допускающем состоянии.
Описание
Для начало воспользуемся графовым представлением ДКА. Пусть в нем вершин и все вершины пронумерованы. Тогда для представления такого графа можно воспользоваться набором матриц смежности таких, что каждая матрица размера и что для каждого символа сопоставляется единственная матрица из этого набора. Каждая матрица записана и таким образом, что означает переход из состояние в по символу , а — его отсутствие. В этом случаи, текущее состояние автомата записывается как вектор, размерности , в котором будет лишь одна единица, обозначающая текущее положение состояния. При помощи такого описания можно легко делать переходы из нынешнего состояние в новое состояние по символу обыкновенный умножением матриц.
- Пусть у нас есть ДКА с вершинами и его . Тогда по описанному определению можно составить матрицы смежности размерности . Так же введем — размерный вектор , описывающее состояние ДКА, a — начальное состояние автомата. Тогда для перехода из состояния в по строчке нужно воспользоваться правилом умножения матриц из линейной алгебры :
Описанное выше по сути и является ККА, но в записываются амплитуды вероятностей, a матрицы — унитарные матрицы. Для ККА характерено геометрическая интерпретация в пространстве . С этой стороны вектор является точкой, a — операторы эволюции в представлении Шредингера [2].
В дополнении для ККА можно упомянуть пару особенностей :
- НКА. Из-за свойство НКА в векторе и в столбцах матриц может находиться несколько . Если в этом случаи рассмотреть алгоритм Томпсона, то построенные на их основе Квантовые конечные автоматы не будут эквивалентны. Эта проблема является одно научно-исследовательских задач в теории ККА.
- Вероятностный конечный автомат. Для его построения нужно всего лишь в ККА использовать стохастические матрицы[3] для и вектор вероятностей состояний для . Одно из свойств — сумма всех элементов равна и для того чтобы во всех переходах сохранялось это свойство и нужны стохастические матрицы.
Одномерный квантовый конечный автомат
Авторы одномерного (англ. Measure-one, 1-way) ККА - Cris Moore и James P. Crutchfield (2000). Главное свойство — допускать регулярный язык. В таком виде конечный автомат с состояниями представляется в виде кубита c N-состояниями. Такой кубит и приносит в это пространство метрику . Матрицы смежности остаются унитарными, а переход в новое сосояние по символу :
- = .
Переход в допускающее состояние производиться матрицей-проектором[4] .
Вероятность , где равна :
Многомерный квантовый конечный автомат
| Определение: |
Многомерный квантовый конечный автомат — это кортеж : , где
|
Многомерный (или Двухмерный) (англ. Measure-many, 2-way) ККА был введен Attila Kondacs и John Watrous в 1997. Главное свойство - допускать нерегулярный язык за линейное время.
Принципы многомерного ККА очень схож с Одномерный, за исключением применение матрицы после каждого итерации символа строки. Для формального определения понадобиться гильбертово пространство. Пусть у нас есть гильбертово пространство :
, где - допускающее пр-во , - отвергающее пр-во , - промежуточное пр-во. Для каждого пр-ва существует наборы базисных ординальных векторов соответственно :
- , где — линейная оболочка
Так же в многомерном ККА присутствуют 3 матрицы-проектора : , и для каждого гильбертово пр-ва :
Переход в новое состояние кубита остается таким же, но после каждого перехода кубит коллпасирует в одно из 3 гильбертовых пр-в . Для того чтобы определить вероятность автомата находиться в допускающем состоянии нужно :
- , где — входящая строчка
См. также
- Детерминированные конечные автоматы
- Недетерминированные конечные автоматы
- Построение по НКА эквивалентного ДКА, алгоритм Томпсона
Примечания
Источники информации
- Andris Ambainis, QUANTUM FINITE AUTOMATA
- Wikipedia — Quantum finite automata