Контексты и синтаксические моноиды — различия между версиями
Megabyte (обсуждение | вклад) м (→Применение) |
Megabyte (обсуждение | вклад) |
||
| Строка 60: | Строка 60: | ||
'''Групповой язык''' (англ. ''group language'') {{---}} это язык, синтаксический моноид которого является [[Группа|группой]]. | '''Групповой язык''' (англ. ''group language'') {{---}} это язык, синтаксический моноид которого является [[Группа|группой]]. | ||
}} | }} | ||
| − | === | + | === Свойства === |
Синтаксический моноид <tex>M(L)</tex> определён для любого <tex>L \in \Sigma^*</tex>, однако некоторые свойства языка можно определить по структуре его синтаксического моноида. Размер синтаксического моноида является мерой структурной сложности языка. | Синтаксический моноид <tex>M(L)</tex> определён для любого <tex>L \in \Sigma^*</tex>, однако некоторые свойства языка можно определить по структуре его синтаксического моноида. Размер синтаксического моноида является мерой структурной сложности языка. | ||
| Строка 84: | Строка 84: | ||
Рассмотрим язык <tex>L = \{\omega \mid |\omega|</tex> <tex>mod</tex> <tex>2 = 0 \}</tex>. | Рассмотрим язык <tex>L = \{\omega \mid |\omega|</tex> <tex>mod</tex> <tex>2 = 0 \}</tex>. | ||
<br /><tex>\{\langle u, v \rangle \mid uxv \in L\}</tex> {{---}} это множество всех пар <tex>\langle u,v \rangle</tex>, таких что <tex>|u| + |v| = |x|</tex> <tex>(mod</tex> <tex>2)</tex>. Значит, <tex>M(L)</tex> состоит из двух элементов: множества слов чётной длины и множества слов нечётной длины. Нейтральным элементом в данном моноиде является множество слов чётной длины. Оба элемента являются обратными самим себе, значит <tex>M(L)</tex> является группой, следовательно <tex>L</tex> {{---}} групповой язык. | <br /><tex>\{\langle u, v \rangle \mid uxv \in L\}</tex> {{---}} это множество всех пар <tex>\langle u,v \rangle</tex>, таких что <tex>|u| + |v| = |x|</tex> <tex>(mod</tex> <tex>2)</tex>. Значит, <tex>M(L)</tex> состоит из двух элементов: множества слов чётной длины и множества слов нечётной длины. Нейтральным элементом в данном моноиде является множество слов чётной длины. Оба элемента являются обратными самим себе, значит <tex>M(L)</tex> является группой, следовательно <tex>L</tex> {{---}} групповой язык. | ||
| + | |||
| + | <br />В качестве другого примера рассмотрим язык <tex>L = 0^n1^n</tex> над алфавитом <tex>\Sigma = \{0,1\}^*</tex>. Балансом слова <tex>|\omega|_b</tex> назовём число, равное разности между количеством нулей и единиц, встречающихся в данном слове. Если слово <tex>\omega = uxv</tex> принадлежит языку <tex>L</tex>, то <tex>|x|_b = -(|u|_b + |v|_b)</tex>. Но <tex>|x|_b</tex> может принимать любое целое значение, при том, что <tex>x</tex> имеет непустой двухсторонний контекст. Значит, синтаксический моноид <tex>M(L)</tex> имеет бесконечное количество элементов, что значит, что данный язык не является регулярным. | ||
== Ссылки == | == Ссылки == | ||
Версия 03:15, 5 января 2014
Содержание
Контексты
Правый контекст
| Определение: |
| Правым контекстом (англ. right context) слова в языке называется множество . |
| Лемма: |
Язык — регулярный множество его правых контекстов конечно. |
| Доказательство: |
|
|
Левый контекст
| Определение: |
| Левым контекстом (англ. left context) слова в языке называется множество . |
| Лемма: |
Язык — регулярный множество его левых контекстов конечно. |
| Доказательство: |
| Поскольку множество регулярных языков замкнуто относительно операции разворота, то из того, что и аналогичного утверждения о правых контекстах получаем требуемое. |
Двухсторонний контекст
| Определение: |
| Двухсторонним контекстом (англ. two-sided context) слова в языке называется множество . |
| Лемма: |
Язык — регулярный множество его двухсторонних контекстов конечно. |
| Доказательство: |
|
|
Синтаксический моноид
Определения
| Определение: |
| Синтаксическим моноидом (англ. syntactic monoid) языка называется множество, состоящее из его классов эквивалентности , с введённым на нём операцией конкатенации , где . Нейтральным элементом в нём является . |
| Определение: |
| Групповой язык (англ. group language) — это язык, синтаксический моноид которого является группой. |
Свойства
Синтаксический моноид определён для любого , однако некоторые свойства языка можно определить по структуре его синтаксического моноида. Размер синтаксического моноида является мерой структурной сложности языка.
| Теорема: |
Язык — регулярный его синтаксический моноид конечен. |
| Доказательство: |
|
Размер синтаксического моноида языка равен количеству его различных двухсторонних контекстов . Применяя лемму, доказанную ранее, получаем: Язык — регулярный множество его двухсторонних контекстов конечно его синтаксический моноид конечен. |
| Лемма: |
Пусть язык распознается ДКА . Тогда размер его синтаксического моноида не превосходит . |
| Доказательство: |
|
Введём на следующее отношение эквивалентности:
|
Примеры
Рассмотрим язык .
— это множество всех пар , таких что . Значит, состоит из двух элементов: множества слов чётной длины и множества слов нечётной длины. Нейтральным элементом в данном моноиде является множество слов чётной длины. Оба элемента являются обратными самим себе, значит является группой, следовательно — групповой язык.
В качестве другого примера рассмотрим язык над алфавитом . Балансом слова назовём число, равное разности между количеством нулей и единиц, встречающихся в данном слове. Если слово принадлежит языку , то . Но может принимать любое целое значение, при том, что имеет непустой двухсторонний контекст. Значит, синтаксический моноид имеет бесконечное количество элементов, что значит, что данный язык не является регулярным.
Ссылки
- Howard Straubing Finite automata, formal logic, and circuit complexity, 1994. ISBN 3-7643-3719-2. — C. 53.
- James A. Anderson Automata theory with modern applications, 2006. ISBN 0-521-61324-8. — С. 72.
- Syntactic monoid - Wikipedia