Числа Эйлера I и II рода — различия между версиями
VolhovM (обсуждение | вклад) |
VolhovM (обсуждение | вклад) (→Пример) |
||
| Строка 56: | Строка 56: | ||
<tex dpi = "130">3[12] => [3(4)][12], 3[12(4)];</tex> | <tex dpi = "130">3[12] => [3(4)][12], 3[12(4)];</tex> | ||
| + | Таким образом мы убеждаемся в верности формулы: | ||
| + | |||
| + | <tex dpi = "160"> \left\langle{4\atop 2}\right\rangle = (2 + 1) \left\langle{3\atop 2}\right\rangle + (4 - 2)\left\langle{4\atop 2}\right\rangle = 11;</tex> | ||
==Треугольник чисел Эйлера I рода и явная формула== | ==Треугольник чисел Эйлера I рода и явная формула== | ||
==Числа Эйлера II рода== | ==Числа Эйлера II рода== | ||
Версия 12:28, 18 декабря 2013
Числа Эйлера I рода (Eulerian numbers) — количество перестановок чисел от 1 до n таких, что в каждой из них существует ровно m подъемов. Числа Эйлера I рода обозначают как или же .
| Определение: |
| Пусть и - элементы некоторой перестановки порядка причем . Тогда пара называется подъемом (ascent) данной перестановки. |
Содержание
Вывод рекуррентной формулы
Пусть у нас есть некая перестановка . Тогда операцией вставки элемента с номером n в какую-либо из позиций мы получим перестановок вида . Далее рассмотрим два случая:
1. Количество подъемов в перестановке равно количеству подъемов в . Этого можно добиться, вставляя элемент на самое первое место в (всего возможностей) или перед последним последним элементом каждого подъема(еще раз).
2. Количество подъемов в новой перестановке на один больше предыдущего количества. Этого эффекта добиваемся вставкой элемента в конце каждой перестановки или после элемента перестановки со значением . Таких элементов, как не трудно догадаться, будет .
Тогда рекуррентная формула имеет вид:
Примем также следующие начальные значения:
, если или если ;
Пример
Рассмотрим все перестановки порядка , в которых есть ровно 2 подъема (в квадратных скобках один или больше подъемов подряд):
Согласно алгоритму вывода рекуррентной формулы мы можем добавить '4' в следующие позиции всех перестановок порядка с двумя подъемами, не увеличив количество подъемов:
Далее рассмотрим все перестановки порядка с одним подъемом, причем операцией вставки мы будем увеличивать количество перестановок на 1:
Таким образом мы убеждаемся в верности формулы: