Хроматический многочлен планарного графа — различия между версиями
Martoon (обсуждение | вклад) м (→Раскраска в 6 цветов) |
Martoon (обсуждение | вклад) |
||
| Строка 19: | Строка 19: | ||
* Переход | * Переход | ||
Предположим, что для планарного графа с <tex>N</tex> вершинами существует раскраска в 6 цветов. Докажем то же для графа с <tex> N+1 </tex> вершиной. | Предположим, что для планарного графа с <tex>N</tex> вершинами существует раскраска в 6 цветов. Докажем то же для графа с <tex> N+1 </tex> вершиной. | ||
| − | |||
По только что доказанной лемме в <tex> G </tex> найдётся вершина степени не больше 5. Удалим её; по предположению индукции получившийся граф можно раскрасить в 6 цветов. | По только что доказанной лемме в <tex> G </tex> найдётся вершина степени не больше 5. Удалим её; по предположению индукции получившийся граф можно раскрасить в 6 цветов. | ||
| Строка 28: | Строка 27: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
| − | Пусть граф <tex>G</tex> - планарный. Тогда <tex> \chi (G) \le | + | Пусть граф <tex>G</tex> - планарный. Тогда <tex> \chi (G) \le 5</tex> |
|proof= | |proof= | ||
| − | Начало доказательства такое же, как в предыдущей теореме, трудность возникает в индукционном переходе | + | Начало доказательства такое же, как в предыдущей теореме, трудность возникает в индукционном переходе. Покажем что для случая с 5-ю цветами всё равно можно вернуть удалённую вершину так, чтобы раскраска осталась правильной. |
Обозначим за <tex> u </tex> - возвращаемую вершину, <tex> v^{(k)} </tex> - вершина, покрашенная в <tex> k </tex> цвет. | Обозначим за <tex> u </tex> - возвращаемую вершину, <tex> v^{(k)} </tex> - вершина, покрашенная в <tex> k </tex> цвет. | ||
| − | Если среди вершин, смежных <tex> u </tex> есть две вершины одного цвета, значит остаётся один свободный цвет, в который мы и покрасим <tex> u </tex>. | + | Если среди вершин, смежных <tex> u </tex>, есть две вершины одного цвета, значит остаётся один свободный цвет, в который мы и покрасим <tex> u </tex>. |
| + | |||
| + | Иначе, уложим полученный после удаления <tex> u </tex> граф на плоскость и пронумеруем цвета в порядке обхода смежных вершин по часовой стрелке. | ||
| − | + | Попробуем покрасить <tex> u </tex> в цвет 1. Чтобы раскраска осталась правильной, перекрасим смежную ей вершину <tex>v_1^{(1)}</tex> в цвет 3. Если среди смежных ей вершин есть вершины <tex> v_2^{(3)} </tex>, покрасим их в цвет 1, и так далее. Рассмотрим 2 необычных варианта, которые могут наступить во время обхода: | |
| + | #мы дойдём до уже однажды перекрашенной вершины (и хотим перекрасить её обратно). Видно что такая ситуация невозможна, поскольку мы меняли цвета вершин по схеме 1 <tex>\leftrightarrow</tex> 3, и если мы получили две смежные вершины одного цвета, значит и до перекрасок в графе были две вершины одинакового цвета, а по предположению граф без <tex> u </tex> был раскрашен правильно. | ||
| + | #дойдём до вершины, смежной <tex> u </tex>, исходно имевшей цвет 3, которую перекрасить в 1 нельзя (<tex> u </tex> теперь имеет цвет 1). | ||
| − | + | Если этот процесс был успешно завершён, то получили правильную раскраску. | |
| − | + | Если же в соответствии со 2-ым вариантом перекраска не удалась, это означает, что в <tex> G </tex> есть цикл <tex> u v_1^{(1)} v_2^{(3)} v_3^{(1)} ... v_{k-1}^{(1)} v_k^{(3)} u </tex>. | |
| − | |||
| − | + | Тогда попытаемся таким же образом перекрасить <tex> u </tex> в цвет 2, а смежную ей <tex>w_1^{(2)}</tex> в цвет 4 (со последующими перекрасками). Если удастся - раскраска получена. | |
| − | + | Если нет, то получили ещё один цикл <tex> u w_1^{(2)} w_2^{(4)} w_3^{(2)} ... w_{k-1}^{(2)} w_k^{(4)} u </tex>. Но граф планарный, значит два полученных цикла пересекаются по крайней мере в двух вершинах - <tex> u </tex> и какой-то другой, что невозможно, ведь вершины <tex> v_i </tex> первого цикла и <tex> w_j </tex> второго - разных цветов. В этом случае получаем противоречие. | |
| − | |||
}} | }} | ||
| − | Заметим что нельзя составить подобное доказательство для раскраски в 4 цвета, поскольку наличие двух вершин одного цвета среди смежных <tex> u </tex> не исключает того, что все они раскрашены в разные цвета | + | Заметим что нельзя составить подобное доказательство для раскраски в 4 цвета, поскольку здесь наличие двух вершин одного цвета среди смежных <tex> u </tex> не исключает того, что все они раскрашены в разные цвета |
== Раскраска в 4 цвета == | == Раскраска в 4 цвета == | ||
Версия 22:40, 9 декабря 2013
Содержание
Введение
Раскраска в 6 цветов
| Лемма: |
В любом графе существует вершина степени не больше 5 |
| Доказательство: |
| Предположим это не так. Для любой вершины графа верно . Если сложить это неравенство для всех , получим . Но по следствию из теоремы Эйлера . Пришли к противоречию. |
| Теорема: |
Пусть граф - планарный. Тогда |
| Доказательство: |
|
Докажем по индукции.
Если граф содержит не более 6 вершин, то утверждение очевидно.
Предположим, что для планарного графа с вершинами существует раскраска в 6 цветов. Докажем то же для графа с вершиной. По только что доказанной лемме в найдётся вершина степени не больше 5. Удалим её; по предположению индукции получившийся граф можно раскрасить в 6 цветов. Вернём удалённую вершину и покрасим её в цвет, не встречающийся среди смежных ей вершин. Индукционный переход доказан |
Раскраска в 5 цветов
| Теорема: |
Пусть граф - планарный. Тогда |
| Доказательство: |
|
Начало доказательства такое же, как в предыдущей теореме, трудность возникает в индукционном переходе. Покажем что для случая с 5-ю цветами всё равно можно вернуть удалённую вершину так, чтобы раскраска осталась правильной. Обозначим за - возвращаемую вершину, - вершина, покрашенная в цвет. Если среди вершин, смежных , есть две вершины одного цвета, значит остаётся один свободный цвет, в который мы и покрасим . Иначе, уложим полученный после удаления граф на плоскость и пронумеруем цвета в порядке обхода смежных вершин по часовой стрелке. Попробуем покрасить в цвет 1. Чтобы раскраска осталась правильной, перекрасим смежную ей вершину в цвет 3. Если среди смежных ей вершин есть вершины , покрасим их в цвет 1, и так далее. Рассмотрим 2 необычных варианта, которые могут наступить во время обхода:
Если этот процесс был успешно завершён, то получили правильную раскраску. Если же в соответствии со 2-ым вариантом перекраска не удалась, это означает, что в есть цикл . Тогда попытаемся таким же образом перекрасить в цвет 2, а смежную ей в цвет 4 (со последующими перекрасками). Если удастся - раскраска получена. Если нет, то получили ещё один цикл . Но граф планарный, значит два полученных цикла пересекаются по крайней мере в двух вершинах - и какой-то другой, что невозможно, ведь вершины первого цикла и второго - разных цветов. В этом случае получаем противоречие. |
Заметим что нельзя составить подобное доказательство для раскраски в 4 цвета, поскольку здесь наличие двух вершин одного цвета среди смежных не исключает того, что все они раскрашены в разные цвета