Задача многокритериальной оптимизации. Multiobjectivization — различия между версиями
(→Задача многокритериальной оптимизации) |
(→Задачи) |
||
| Строка 78: | Строка 78: | ||
Для того, чтобы объектизировать эту задачу, нам необходимо определить подзадачи. TSP – является <math>NP</math>-сложной именно потому, что нет хорошего разложения этой задачи. | Для того, чтобы объектизировать эту задачу, нам необходимо определить подзадачи. TSP – является <math>NP</math>-сложной именно потому, что нет хорошего разложения этой задачи. | ||
| − | + | Разобьём задачу таким образом: | |
| + | :<math>minimize\{f(\pi,a,b) = (f_1(\pi,a,b),f_2(\pi,a,b))\}</math> | ||
| + | ::'''where'''<math>f_1(\pi,a,b)=\sum^{\pi^{-1}(b)-1}_{i=\pi^{-1}(a)} d(C_{\pi(i)},C_{\pi(i+1)})</math> | ||
| + | ::'''and''' <math>f_2(\pi,a,b)=\sum^{N-1}_{i=\pi^{-1}(b)} d(C_{\pi(i)},C_{\pi(i+1)}) + \sum^{\pi^{-1}(a)-1}_{i=1} d(C_{\pi(i)},C_{\pi(i+1)}) </math> <math>+ d(C_{\pi(N)},C_{\pi(1)})</math>, | ||
| − | + | где <math>a</math> и <math>b</math> – два города, указанных ''априори''. | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | Предполагается, что <math>a</math> и <math>b</math> выбраны произвольно. | |
| − | |||
| − | |||
== Источники == | == Источники == | ||
Версия 14:13, 20 июня 2012
Содержание
Введение
В данной статье рассматривается многокритериальная оптимизация, её задача. Рассматривается понятие Парето-фронт - множество Парето оптимальных значений. Также рассматривается задача коммивояжера и предлагается её решение с помощью генетического алгоритма с "жадной" стратегией.
Задача многокритериальной оптимизации
Постановка задачи
| Определение: |
| Задача многокритериальной оптимизации:
|
Так как не существует единого решение, которое было бы максимальным для всех целевых функций, вместо него можно искать множество множество Парето оптимальных значений.
Множество Парето оптимальных значений
| Определение: |
Множество Парето оптимальных значений:
|
Выражение означает, что доминирует над .
Говорят, что доминирует над . по Парето, если не хуже по всем критериям и хотя бы по одному критерию превосходит . В таком случае в выборе нет смысла, т.к. по всем параметрам не уступает, а по каким-то и превосхожит . Если рассматривать всего два критерия то на рис. 1 показана область пространства, доминируемая данным решением А. Эта область «замкнута»: элементы на ее границе также доминируемы А
| Определение: |
| Для двух решений и говорят тогда и только тогда, когда – такую пару решений называют недоминируемой |
На рис. 2 показана граница Парето для возможных решений в двухкритериальном пространстве
Множество Парето оптимальных недоминируемых решений называется Парето фронтом.
Multi-objectivization
Суть метода мульти-объективизации заключается в разбитии сложной задачи с одной целевой функцией на несколько подзадач, найти для каждой подзадачи решение и выбрать оптимальное решение.
Для выполнения оптимизации многокритериальной задачи мы должны добавить в целевую функцию новые параметры, либо должны добавить новые целевые функции.
Сложность этой процедуры заключается в разложении проблемы на ряд мелких независимых между собой подпроблем.
Алгоритмы
Hill-Climbers
| Определение: |
| Hill-Climbers – Итеративный алгоритм, который начинается с произвольного решения проблемы, а затем пытается найти лучшее решение, постепенно изменяя его. Если изменения позволяют найти лучшее решение, алгоритм сохраняет его и повторяет и повторяет своё выполнение до тех пор, пока лучшие решения не могут быть найдены |
| Initialization: | Init_pop |
| Main Loop: | Rand_mem,Rand_mem Mutate,Mutate
if if |
| Termination: | return Best |
Задачи
Задача коммивояжера (TSP)является наиболее известно из всего класса -сложных задач. Формулируется задача следующим образом:
Задано – множество городов и для каждой пары задано расстояние. Наша цель – найти цепь из городов, минимизирующую величину:
Для того, чтобы объектизировать эту задачу, нам необходимо определить подзадачи. TSP – является -сложной именно потому, что нет хорошего разложения этой задачи.
Разобьём задачу таким образом:
-
- where
- and ,
где и – два города, указанных априори.
Предполагается, что и выбраны произвольно.
Источники
- Википедия: Многокритериальная оптимизация
- Knowles J., Watson R., Corne D. Reducing Local Optima in Single-Objective Problems by Multi-objectivization
- Wikipedia: Multiobjective optimization
- Wikipedia: Hill climbing
- Гладков Л.А., Курейчик В.В., Курейчик В.М. "Генетические алгоритмы. Учебное пособие"