Сложностные классы. Вычисления с оракулом — различия между версиями
| Строка 1: | Строка 1: | ||
| + | В начале 1960-х годов, в связи с началом широкого использования вычислительной техники для решения практических задач, возник вопрос о границах практической применимости данного алгоритма решения задачи в смысле ограничений на её размерность. Какие задачи могут быть решены на ЭВМ за реальное время? | ||
| + | |||
| + | Ответ на этот вопрос был дан в работах Кобхэма (Alan Cobham, 1964) и Эдмондса (Jack Edmonds, 1965), где были введены сложностные классы задач. К ним относятся классы [[Класс P|P]], [[Классы NP и Σ₁|NP]] и т.д. | ||
| + | |||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
| Строка 8: | Строка 12: | ||
}} | }} | ||
| + | Введём понятия <tex>\mathrm{DTIME}</tex> и <tex>\mathrm{DSPACE}</tex>, аналогичным образом определяются классы <tex>\mathrm{NSPACE}</tex> и <tex>\mathrm{NTIME}</tex> (префикс <tex>\mathrm{D}</tex> соответствует детерминизму, а <tex>\mathrm{N}</tex> — недетерминизму). Через них будет дано определение многим сложностным классам. | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
| − | <tex>\mathrm{ | + | <tex>\mathrm{DTIME}(f(n))</tex> — класс языков <tex>L</tex>, для которых существует детерминированная программа <tex>p</tex> такая, что <tex>L(p)=L</tex> и для любого <tex>x</tex> из <tex>L</tex> выполнено <tex>\mathrm{T}(p,x) = O(f(n))</tex> (здесь <tex>n</tex> — длина <tex>x</tex>). |
}} | }} | ||
| − | |||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
| − | <tex>\mathrm{ | + | <tex>\mathrm{DSPACE}(f(n))</tex> — класс языков <tex>L</tex>, для которых существует детерминированная программа <tex>p</tex> такая, что <tex>L(p)=L</tex> и для любого <tex>x</tex> из <tex>L</tex> выполнено <tex>\mathrm{S}(p,x) = O(f(n))</tex> (здесь <tex>n</tex> — длина <tex>x</tex>). |
}} | }} | ||
| + | |||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
| − | <tex>\mathrm{ | + | <tex>\mathrm{TS}(f,g)</tex> — класс языков <tex>L</tex>, для которых существует детерминированная программа <tex>p</tex> такая, что <tex>L(p)=L</tex> и для любого <tex>x</tex> из <tex>L</tex> выполнено <tex>\mathrm{T}(p,x) = O(f(n))</tex> и <tex>\mathrm{S}(p,x) = O(g(n)).</tex> |
}} | }} | ||
Версия 17:47, 4 июня 2012
В начале 1960-х годов, в связи с началом широкого использования вычислительной техники для решения практических задач, возник вопрос о границах практической применимости данного алгоритма решения задачи в смысле ограничений на её размерность. Какие задачи могут быть решены на ЭВМ за реальное время?
Ответ на этот вопрос был дан в работах Кобхэма (Alan Cobham, 1964) и Эдмондса (Jack Edmonds, 1965), где были введены сложностные классы задач. К ним относятся классы P, NP и т.д.
| Определение: |
| — время работы программы р на входе х. |
| Определение: |
| — объем памяти, требуемый программе р для выполнения на входе х. |
Введём понятия и , аналогичным образом определяются классы и (префикс соответствует детерминизму, а — недетерминизму). Через них будет дано определение многим сложностным классам.
| Определение: |
| — класс языков , для которых существует детерминированная программа такая, что и для любого из выполнено (здесь — длина ). |
| Определение: |
| — класс языков , для которых существует детерминированная программа такая, что и для любого из выполнено (здесь — длина ). |
| Определение: |
| — класс языков , для которых существует детерминированная программа такая, что и для любого из выполнено и |
Вычисление с оракулом
| Определение: |
| Оракул — программа , вычисляющая за времени, верно ли, что . |
Сложностный класс задач, решаемых алгоритмом из класса с оракулом для языка , обозначают . Если — множество языков, то .