Свойства перечислимых языков. Теорема Успенского-Райса — различия между версиями
Vincent (обсуждение | вклад) |
Vincent (обсуждение | вклад) (→Теорема Успенского-Райса) |
||
| Строка 35: | Строка 35: | ||
return <tex>\bot</tex> | return <tex>\bot</tex> | ||
| − | Нетрудно понять, что в разумной модели вычислений номер этой программы можно вычислить по данным <tex>i | + | Нетрудно понять, что в разумной модели вычислений номер этой программы можно вычислить по данным <tex>i</tex> и <tex>x</tex>. Значит, можно рассмотреть такую программу: |
<tex>US(\langle i, x \rangle )</tex> | <tex>US(\langle i, x \rangle )</tex> | ||
return <tex>p_A ( g_{i,x} ) </tex> | return <tex>p_A ( g_{i,x} ) </tex> | ||
Версия 01:59, 23 января 2012
Определения
Рассмотрим множество всех перечислимых языков .
| Определение: |
| Свойством языков называется множество . |
| Определение: |
| Свойство называется тривиальным, если или . |
| Определение: |
| Язык свойства — множество программ, языки которых обладают этим свойством: . |
| Определение: |
| Свойство называется разрешимым, если является разрешимым. |
Теорема Успенского-Райса
| Теорема: |
Никакое нетривиальное свойство языков не является разрешимым. |
| Доказательство: |
|
Приведём доказательство от противного. Предположим, что разрешимо и нетривиально, — программа, разрешающая . Не умаляя общности, можно считать, что (в противном случае перейдём к , которое также будет разрешимым и нетривиальным). Поскольку непусто, то найдётся перечислимый язык . Пусть — полуразрешитель . Рассмотрим вспомогательную программу: if U(i, x) == 1 return else return Нетрудно понять, что в разумной модели вычислений номер этой программы можно вычислить по данным и . Значит, можно рассмотреть такую программу: return Заметим, что Следовательно,— программа, разрешающая универсальное множество. Получили противоречие. |