Задача о наибольшей общей подпоследовательности — различия между версиями
м |
|||
| Строка 15: | Строка 15: | ||
== Наивная идея решения == | == Наивная идея решения == | ||
| − | Переберем все различные подпоследовательности обеих строк и сравним их. | + | Переберем все различные подпоследовательности обеих строк и сравним их. Тогда искомая НОП гарантированно найдётся, однако время работы алгоритма будет экспоненциально зависеть от длины исходных последовательностей. |
== Динамическое программирование == | == Динамическое программирование == | ||
=== Решение === | === Решение === | ||
| − | Обозначим как <tex> lcs[i][j] </tex> НОП префиксов данных последовательностей, заканчивающихся в элементах с номерами <tex> i </tex> и <tex> j </tex> соответственно. | + | Данная задача решается с использованием принципа оптимальности на префиксе. Обозначим как <tex> lcs[i][j] </tex> НОП префиксов данных последовательностей, заканчивающихся в элементах с номерами <tex> i </tex> и <tex> j </tex> соответственно. Получается следующее рекуррентное соотношение: |
<tex> | <tex> | ||
| Строка 38: | Строка 38: | ||
=== Построение подпоследовательности === | === Построение подпоследовательности === | ||
| − | Для каждой пары элементов | + | Для каждой пары элементов помимо длины НОП соответствующих префиксов хранятся и номера последних элементов, участвующих в этой НОП.Таким образом, посчитав ответ, можно восстановить всю наибольшую общую подпоследовательность. |
=== Псевдокод === | === Псевдокод === | ||
| Строка 101: | Строка 101: | ||
// ответ — lcs[1][n] | // ответ — lcs[1][n] | ||
| − | + | Также можно заметить, что от <tex> (i - 1) </tex>-ой строчки нужны только элементы с <tex> (j - 1) </tex>-го столбца. В этом случае можно использовать лишь <tex> min(m, n) </tex> элементов таблицы: | |
LCS3(x, y) | LCS3(x, y) | ||
Версия 22:03, 12 января 2012
Задача нахождения наибольшей общей подпоследовательности (longest common subsequence, LCS) — это задача поиска последовательности, которая является самой длинной подпоследовательностью нескольких последовательностей (обычно двух).
Содержание
Определения
| Определение: |
| Последовательность является подпоследовательностью (subsequence) последовательности , если существует строго возрастающая последовательность индексов таких, что для всех выполняется соотношение . |
Другими словами, подпоследовательность данной последовательности — это последовательность, из которой удалили ноль или больше элементов. Например, является подпоследовательностью последовательности , а соответствующая последовательность индексов имеет вид .
| Определение: |
| Последовательность является общей подпоследовательностью (common subsequence) последовательностей и , если является подпоследовательностью как , так и . |
Постановка задачи
Даны две последовательности: и . Требуется найти общую подпоследовательность и максимальной длины. Заметим, что таких подпоследовательностей может быть несколько.
Наивная идея решения
Переберем все различные подпоследовательности обеих строк и сравним их. Тогда искомая НОП гарантированно найдётся, однако время работы алгоритма будет экспоненциально зависеть от длины исходных последовательностей.
Динамическое программирование
Решение
Данная задача решается с использованием принципа оптимальности на префиксе. Обозначим как НОП префиксов данных последовательностей, заканчивающихся в элементах с номерами и соответственно. Получается следующее рекуррентное соотношение:
Очевидно, что сложность алгоритма составит , где и — длины последовательностей.
Доказательство оптимальности
База: при или длина одной из последовательностей равна нулю, поэтому и их НОП тоже нулевой длины.
Переходы: предположим, что некоторое значение посчитано неверно. Однако, в случае различия соответствующих символов, они не могут одновременно участвовать в НОП, а значит ответ действительно равен формуле для случая с различными символами. В случае же равенства, ответ не может быть больше, чем , так как тогда неверно посчитано значение .
Построение подпоследовательности
Для каждой пары элементов помимо длины НОП соответствующих префиксов хранятся и номера последних элементов, участвующих в этой НОП.Таким образом, посчитав ответ, можно восстановить всю наибольшую общую подпоследовательность.
Псевдокод
, — данные последовательности; — НОП для префикса длины последовательности и префикса длины последовательности ; — пара индексов элемента таблицы, соответствующего оптимальному решению вспомогательной задачи, выбранной при вычислении .
// подсчёт таблиц
LCS(x, y)
m = length(x)
n = length(y)
for i = 1 to m
lcs[i][0] = 0
for j = 0 to n
lcs[0][j] = 0
for i = 1 to m
for j = 1 to n
if x[i] == y[i]
lcs[i][j] = lcs[i - 1][j - 1] + 1
prev[i][j] = pair(i - 1, j - 1)
else
if a[i - 1][j] >= a[i][j - 1]
lcs[i][j] = lcs[i - 1][j]
prev[i][j] = pair(i - 1, j)
else
lcs[i][j] = lcs[i][j - 1]
prev[i][j] = pair(i, j - 1)
// вывод НОП, вызывается как printLCS(prev, x, m, n)
printLCS(prev, x, i, j)
if i == 0 or j == 0 // пришли к началу НОП
return
if prev[i][j] == pair(i - 1, j - 1) // если пришли в lcs[i][j] из lcs[i - 1][j - 1], то x[i] == y[j], надо вывести этот элемент
printLCS(prev, x, i - 1, j - 1)
print x[i]
else
if prev[i][j] == pair(i - 1, j)
printLCS(prev, x, i - 1, j)
else
printLCS(prev, x, i, j - 1)
Оптимизация для вычисления только длины НОП
Заметим, что для вычисления нужны только -ая и -ая строчки матрицы . Тогда можно использовать лишь элементов таблицы:
LCS2(x, y)
if length(x) < length(y) // в таблице будет length(y) столбцов, и если length(x) меньше, выгоднее поменять местами x и y
swap(x, y)
m = length(x)
n = length(y)
for j = 0 to n
lcs[0][j] = 0
lcs[1][j] = 0
for i = 1 to m
lcs[1][0] = 0
for j = 1 to n
lcs[0][j] = lcs[1][j] // элемент, который был в a[1][j], теперь в предыдущей строчке
if x[i] == y[i]
lcs[1][j] = lcs[0][j - 1] + 1
else
if lcs[0][j] >= lcs[1][j - 1]
lcs[1][j] = lcs[0][j]
else
lcs[1][j] = lcs[1][j - 1]
// ответ — lcs[1][n]
Также можно заметить, что от -ой строчки нужны только элементы с -го столбца. В этом случае можно использовать лишь элементов таблицы:
LCS3(x, y)
if length(x) < length(y) // в таблице будет length(y) столбцов, и если length(x) меньше, выгоднее поменять местами x и y
swap(x, y)
m = length(x)
n = length(y)
for j = 0 to n
lcs[j] = 0
d = 0 // d — дополнительная переменная, в ней хранится lcs[i - 1][j - 1]
// в lcs[j], lcs[j + 1], …, lcs[n] хранятся lcs[i - 1][j], lcs[i - 1][j + 1], …, lcs[i - 1][n]
// в lcs[0], lcs[1], …, lcs[j - 1] хранятся lcs[i][0], lcs[i][1], …, lcs[i][j - 1]
for i = 1 to m
for j = 1 to n
tmp = lcs[j]
if x[i] == y[i]
lcs[j] = d + 1
else
if lcs[j] >= lcs[j - 1]
lcs[j] = lcs[j] // в lcs[j] и так хранится lcs[i - 1][j]
else
lcs[j] = lcs[j - 1]
d = tmp
// ответ — lcs[n]
Список литературы
Т. Кормен, Ч. Лейзерсон, Р. Риверст, К. Штайн, «Алгоритмы: построение и анализ», 2-е изд., стр 418—425