Определение измеримой функции — различия между версиями
Sementry (обсуждение | вклад) м |
Sementry (обсуждение | вклад) м |
||
| Строка 1: | Строка 1: | ||
| + | [[Математический_анализ_2_курс|на главную <<]] [[Предельный переход в классе измеримых функций|>>]] | ||
| + | |||
{{В разработке}} | {{В разработке}} | ||
| Строка 94: | Строка 96: | ||
4) Вытекает из прошлых: <tex>f \cdot g = \frac{(f+g)^2 - (f-g)^2}{4}</tex> | 4) Вытекает из прошлых: <tex>f \cdot g = \frac{(f+g)^2 - (f-g)^2}{4}</tex> | ||
}} | }} | ||
| + | |||
| + | [[Математический_анализ_2_курс|на главную <<]] [[Предельный переход в классе измеримых функций|>>]] | ||
| + | [[Категория:Математический анализ 2 курс]] | ||
Версия 20:35, 6 января 2012
Будем рассматривать пространство , считаем, что мера — -конечная, полная, то есть:
Пусть , будем обозначать как обладает свойством совокупность точек из , для которых свойство верно.
| Определение: |
| , — множества Лебега функции . |
| Определение: |
| называется измеримой по Лебегу, если для любого множества Лебега всех четырех типов измеримы(то есть, принадлежат сигма-алгебре). |
| Утверждение (Измеримость по Лебегу): |
Функция измерима по Лебегу на для любого измеримо её множество Лебега одного любого фиксированного типа. |
|
Пусть — измеримо для любого . Установим измеримость остальных:
|
Используя ту же технику, легко установить, что из измеримости на следует и измеримость самого ,
Пример измеримой функции — на измеримом .
Так как измеримо, то постоянная функция на нём измерима.
Всё это распространяется на , — дизъюнктны.
Аналогично, измерима на функция , .
| Утверждение: |
Пусть — замкнутое множество, в есть мера . Тогда непрерывная функция — измерима. |
|
Установим измеримость . Проверим, что оно замкнуто. Рассмотрим последовательность , пусть она сходится к . По определению множества Лебега, . Так как — замкнутое, и , то предел тоже принадлежит . Значит, по непрерывности, . По непрерывности , из того, что , следует , то есть, . Множество содержит в себе пределы всех сходящихся подпоследовательностей, то есть замкнуто. Но, как было установлено ранее, замкнутые множества измеримы по Лебегу. |
Вывод: класс непрерывных функций содержится в классе измеримых.
Следует обратить внимание, что столь простые рассуждения проходят по той причине, что мы не интересуемся тем, как устроены множества Лебега. Нас интересует только одно их свойство — принадлежность . Природа этих множеств может быть крайне сложной.
| Теорема: |
Пусть и измеримы на . Тогда
1) — измерима |
| Доказательство: |
|
1 и 2) доказываются одинаково. Рассмотрим, например, . При оно может быть непустым. Но это равносильно . Это пересечение двух измеримых множеств Лебега измеримо. 3) Доказывается чуть сложнее
Базируясь на том,что всюду плотно на оси, Тогда Это объединение пересечений измеримых множеств Лебега функций и , операций — счётное число. Значит, тоже измеримо. 4) Вытекает из прошлых: |