Теорема Хаусдорфа об ε-сетях — различия между версиями
Komarov (обсуждение | вклад) м |
Sementry (обсуждение | вклад) м (сходится к себе -> сходится в себе, ну и другие опечатки пофиксил заодно.) |
||
| Строка 41: | Строка 41: | ||
И так далее. Получаем набор точек <tex>x_1, x_2, \ldots</tex>, <tex>\forall i \ne j: \ \rho(x_i, x_j) > \varepsilon_0</tex>. | И так далее. Получаем набор точек <tex>x_1, x_2, \ldots</tex>, <tex>\forall i \ne j: \ \rho(x_i, x_j) > \varepsilon_0</tex>. | ||
| − | Так как <tex>K</tex> {{---}} компакт, то из этой последовательности можно выделить сходящуюся. Но | + | Так как <tex>K</tex> {{---}} компакт, то из этой последовательности можно выделить сходящуюся. Но по построению последовательности это невозможно, получили противоречие. |
<tex>\Longleftarrow</tex> | <tex>\Longleftarrow</tex> | ||
| Строка 85: | Строка 85: | ||
Рассмотрим последовательность точек <tex>x_{1, 1}, x_{2, 2}, x_{3, 3}, \ldots</tex>(''диагональ Кантора'') | Рассмотрим последовательность точек <tex>x_{1, 1}, x_{2, 2}, x_{3, 3}, \ldots</tex>(''диагональ Кантора'') | ||
| − | Очевидно, это подпоследовательность исходной последовательности. Если доказать, что она сходится | + | Очевидно, это подпоследовательность исходной последовательности. Если доказать, что она сходится в себе, то, так как <tex>X</tex> {{---}} полное, у неё будет предел. |
Так как <tex>K</tex> {{---}} замкнутое, то предел этой последовательности принадлежит ей. | Так как <tex>K</tex> {{---}} замкнутое, то предел этой последовательности принадлежит ей. | ||
| Строка 93: | Строка 93: | ||
Так как <tex>x_{n + p, n + p}</tex> есть в <tex>n</tex>-й строке, то <tex>\rho \leq 2\varepsilon_n</tex>. | Так как <tex>x_{n + p, n + p}</tex> есть в <tex>n</tex>-й строке, то <tex>\rho \leq 2\varepsilon_n</tex>. | ||
| − | + | Так как <tex>\varepsilon_n \to 0</tex>, последовательность сходится в себе, то, по полноте <tex> X </tex>, у неё есть предел. | |
}} | }} | ||
Версия 00:48, 22 января 2011
Некоторые определения
Пусть — метрическое пространство. Тогда принимая критерий Коши существования предела числовой последовательности за аксиому, приходим к понятию полного метрического пространства:
Например, в связи с критерием Коши, — полное метрическое пространство.
| Определение: |
| Пусть , . Тогда — -сеть для , если . |
Особый интерес представляют конечные -сети.
| Определение: |
| — вполне ограничено в , если конечная -сеть. |
Теорема Хаусдорфа
| Теорема (Хаусдорф): |
Пусть — полное метрическое пространство, , — замкнуто.
Тогда — компакт — вполне ограниченно. |
| Доказательство: |
|
Пусть — компакт. Предположим, что — не вполне ограниченно. Тогда . Если такого нет, то имеет -сеть . Тогда найдётся . Если бы такого не было, то у была бы -сеть . И так далее. Получаем набор точек , . Так как — компакт, то из этой последовательности можно выделить сходящуюся. Но по построению последовательности это невозможно, получили противоречие.
— замкнутое и вполне ограниченно. Рассмотрим любую последовательность в . Докажем, что из неё можно выделить сходящуюся подпоследовательность. Так как множество вполне ограничено, то оно будет содержаться в конечном объединении шаров радиуса . Рассмотрим последовательность . Она сходится к нулю. Так как — вполне ограниченна, то можно найти точки — -сеть для .
Шаров конечное число. Значит, среди них есть тот, который содержит бесконечное число элементов последовательности. бесконечно много элементов из . Обозначим как . Пусть — замкнутое и вполне ограниченно. Покроем его конечной системой шаров радиуса . Среди них выберем тот, в котором бесконечно много элементов . И так далее... В результате выстраивается следующая бесконечная таблица:
В первой строке бесконечно много элементов из . Во второй строке бесконечно много элементов из . И так далее. Рассмотрим последовательность точек (диагональ Кантора) Очевидно, это подпоследовательность исходной последовательности. Если доказать, что она сходится в себе, то, так как — полное, у неё будет предел. Так как — замкнутое, то предел этой последовательности принадлежит ей. Рассмотрим Так как есть в -й строке, то . Так как , последовательность сходится в себе, то, по полноте , у неё есть предел. |