Конструирование комбинаторных объектов и их подсчёт — различия между версиями
м (Дмитрий Мурзин переименовал страницу Конструирование комбинаторных объектов и их подсчет в [[Конструирование комбинаторных объектов…) |
(→Количество PSet из элементов 0 и 1: w_1 = 2) |
||
| Строка 67: | Строка 67: | ||
:<tex dpi="150">P_{0}=p_{0, 0} = 1</tex>. | :<tex dpi="150">P_{0}=p_{0, 0} = 1</tex>. | ||
| − | :<tex dpi="150">P_{1}=p_{1, 1} = \binom{ | + | :<tex dpi="150">P_{1}=p_{1, 1} = \binom{2}{0}p_{1, 0} + \binom{2}{1}p_{0, 0} = 2p_{0, 0} = 2</tex>. |
:<tex dpi="150">P_{2}=p_{2, 2} = \binom{0}{0} p_{2, 1} + \binom{0}{1}p_{0, 1} = \binom{2}{0}p_{2, 0} + \binom{2}{1}p_{1, 0} + \binom{2}{2}p_{0, 0}= p_{0, 0} = 1</tex>. | :<tex dpi="150">P_{2}=p_{2, 2} = \binom{0}{0} p_{2, 1} + \binom{0}{1}p_{0, 1} = \binom{2}{0}p_{2, 0} + \binom{2}{1}p_{1, 0} + \binom{2}{2}p_{0, 0}= p_{0, 0} = 1</tex>. | ||
:<tex dpi="150">{P_{3}=p_{3, 3} = \binom{0}{0}p_{3, 2} + \binom{0}{1} p_{0, 2} = \binom{0}{0}p_{3, 1} + \binom{0}{1} p_{0, 1} = \binom{2}{0}p_{3, 0} + \binom{2}{1}p_{2, 0} + \binom{2}{2} p_{1, 0} + \binom{2}{3} p_{0, 0}= 0}</tex>. | :<tex dpi="150">{P_{3}=p_{3, 3} = \binom{0}{0}p_{3, 2} + \binom{0}{1} p_{0, 2} = \binom{0}{0}p_{3, 1} + \binom{0}{1} p_{0, 1} = \binom{2}{0}p_{3, 0} + \binom{2}{1}p_{2, 0} + \binom{2}{2} p_{1, 0} + \binom{2}{3} p_{0, 0}= 0}</tex>. | ||
| Строка 75: | Строка 75: | ||
:<tex dpi="150">\{0\}, \{1\}</tex> | :<tex dpi="150">\{0\}, \{1\}</tex> | ||
:<tex dpi="150">\{0, 1\}</tex> | :<tex dpi="150">\{0, 1\}</tex> | ||
| − | |||
===Количество разбиений на слагаемые=== | ===Количество разбиений на слагаемые=== | ||
Версия 23:07, 19 декабря 2019
| Определение: |
| , — множества из различных объектов. — количество объектов веса от до из , а — соответственно для . |
В дальнейшем, будем считать что нет объектов веса , так как в противном случае существует бесконечное количество рассматриваемых комбинаторных объектов любого веса и подсчет теряет смысл, или подсчет сводится к рассматриваемому случаю. Отведем данный вес под пустое множество(то есть ).
Содержание
Последовательности (Seq)
| Определение: |
| — множество всех последовательностей из элементов . — количество последовательностей веса . |
| Утверждение: |
. Причем . |
|
, так как есть единственный способ составить пустую последовательность. Докажем по индукции. База .
Переход.
|
Подсчет битовых векторов длины
Пусть , — множество всех битовых векторов.
Тогда, .
Подсчет Seq из маленьких и больших элементов
Пусть , , — множество всех последовательностей из маленьких и больших элементов, .
Тогда, , где — -ое число Фибоначчи [1].
Подсчет подвешенных непомеченных деревьев с порядком на детях
Пусть — количество таких деревьев с вершинами. — множество всех последовательностей из данных деревьев. — количество последовательностей с суммарным количество вершин . Чтобы получить дерево из вершин, достаточно взять вершину, и подвесить к ней последовательность деревьев с суммарным количеством вершин . Тогда:
- .
- , где — -ое число Каталана.
Множества (PSet)
| Определение: |
| — множество всех множеств, составленных из элементов . — количество множеств суммарного веса . |
| Утверждение: |
, где — количество таких множеств, которые содержат объекты, вес которых не больше чем . Причем , а , . |
|
, так как не набирать никакой вес есть один способ, а , , так как нельзя набрать положительный вес из ничего. Изначально у нас есть только пустое множество веса . Рассмотрим очередной этап вычисления . Для данных и у нас уже имеется множество, которое необходимо дополнить. Мы можем сделать это добавляя от до элементов веса (при условии, что столько различных элементов имеется) в данное множество. Выбрать нужное количество элементов можно с помощью сочетаний. Следовательно, у нас образуется новые множества, которые будет необходимо дополнить элементами веса меньше (чтобы избежать повторений) суммарного веса , где — количество элементов веса которое мы добавили в данное множество. Довольно легко заметить, что данные операции полностью соответствуют описанной выше формуле. |
Количество PSet из элементов 0 и 1
Пусть , — множество всех множеств из , . Тогда , где .
- .
- .
- .
- .
- Для , .
Количество разбиений на слагаемые
Пусть , — множество всех разбиений на слагаемые, . Тогда,
- , где , что, как несложно заметить, соответствует формуле, полученной методом динамического программирования.
Мультимножества (MSet)
| Определение: |
| — множество всех мультимножеств [2] из элементов . — количество мультимножеств из объектов суммарного веса . |
| Утверждение: |
, где — количество таких мультимножеств, которые содержат объекты, вес которых не больше чем . Причем , а , . |
|
, так как не набирать никакой вес есть один способ, а , , так как нельзя набрать положительный вес из ничего. Рассуждения аналогичны рассуждениям , однако теперь мы можем брать один и тот же элемент несколько раз. То есть для подсчета вместо обычных сочетаний нужно использовать сочетания с повторениями. |
Количество MSet из элементов 0 и 1
Пусть , — множество всех мультимножеств из , .
- Тогда, , где
- .
- .
- .
- .
- .
Подсчет подвешенных непомеченных деревьев без порядка на детях
Пусть — количество таких деревьев с вершинами. — множество всех лесов из данных деревьев, так как лес можно интерпретировать как мультимножество из деревьев. — количество лесов с суммарным количество вершин . — количество таких лесов из вершин, что деревья в них содержат не более чем вершин. Чтобы получить дерево из вершин, достаточно взять вершину и подвесить к ней лес деревьев с суммарным количеством вершин . Тогда:
- .
- .
- .
Количество таких деревьев с вершинами образуют последовательность [3]
Пары (Pair)
| Определение: |
| — множество всех пар объектов, составленных из элементов и . — количество пар из объектов суммарного веса . |
| Утверждение: |
. |
| Чтобы составить пару веса нужно взять один элемент веса из и элемент веса из , что полностью соответствует данной формуле. |
Количество подвешенных неполных двоичных деревьев
Пусть — количество таких деревьев с вершинами. — множество всех пар из данных деревьев. Чтобы получить двоичное дерево из вершин, достаточно взять вершину и подвесить к ней левого и правого сына с суммарным количеством вершин . Тогда:
- , где — -ое число Каталана.
Циклы (Cycle)
| Определение: |
| — множество всех циклов [4] из элементов . — количество циклов веса . |
| Утверждение: |
, где , — количество циклов веса длины , а — количество стабилизаторов для циклического сдвига на . |
| Очевидно, что длина цикла веса может быть от до . Посмотрим сколько существует циклов каждой длины. Это можно сделать по лемме Бёрнсайда. |
| Лемма: |
Найдем в общем случае. |
| Доказательство: |
|
Пусть — наибольший общий делитель. Заметим, что в -ой перестановке на -ой позиции стоит элемент . Также, заметим, что элемент переходит в элемент , где . Из этого следует, что длина цикла для -ой перестановки равна , где — наименьшее общее кратное. Также заметим, что если вес нельзя равномерно распределить по всей длине цикла, то стабилизатор равен .
Где — число способов упорядочить набор из элементов суммарного веса и , причем . |
Задача об ожерельях
Решим данным способом задачу об ожерельях. Пусть необходимый вес — это количество бусинок, а — количество цветов. Причем каждая бусинка весит . То есть .
так как невозможно набрать вес менее, чем бусинами при весе бусин .
. Поскольку все бусины имеют одинаковый вес , то
В итоге, .
Метод производящих функций
Такие большие группы часто анализируют с помощью производящих функций. Один из популярных методов — метод символов [5]. Он использует внутреннюю структуру объектов для получения производящих функций. В случае непомеченных объектов, как и в анализе в нашей статье, считается, что нет объектов нулевого веса. Иногда для удобства их добавляют, чтобы показать наличие одного пустого множества. При непомеченных объектах рассмотренные классы имеют следующие производящие функции:
| , где — функция Эйлера. |
|---|
Однако порой некоторые комбинаторные классы удобнее обозначать как помеченные. Например, — помеченные графы. С помеченными объектами используется экспоненциальная производящая функция [6]. В данном случае для некоторых рассмотренных классов используются следующие производящие функции:
| . |
|---|
Ограниченные конструкции
Иногда в анализе необходимо ввести ограничение на количество компонентов. Такой случай обозначается нижним коэффициентом (например, — компонентов).
Непосредственной формулой для производящих функций является диагональ декартова произведения [7] , определяемая как . Тогда имеет место соотношение .
Диагональная конструкция позволяет получить доступ к классу всех неупорядоченных пар из различных элементов из , то есть к . Прямое выражение выполняется следующим способом: неупорядоченная пара связана с двумя упорядоченными парами и , кроме тех случаев, когда , то есть когда пара лежит на диагонали декартова произведения. Другими словами, .
Это, в свою очередь, означает что . Таким образом можно выразить . Аналогично для , и :
Аналогичные рассуждения можно провести и для больших , однако расчеты быстро становятся сложными. Классический способ исправления таких вопросов — теорема Пойа.
Однако в методе символов предлагается более глобальный подход, основанный на многомерных производящих функциях и использующий ряд Бюрмана-Лагранжа [8]. В общем случае, используя метод символов, производящие функции ограниченных конструкций можно подсчитать следующим способом:
| , где — функция Эйлера. |
|---|
См.также
- Лемма Бёрнсайда и Теорема Пойа
- Числа Каталана
- Генерация комбинаторных объектов в лексикографическом порядке