Грани числовых множеств — различия между версиями
Geralt (обсуждение | вклад) м (→Определения) |
м |
||
| Строка 1: | Строка 1: | ||
[[Категория:Математический анализ 1 курс]] | [[Категория:Математический анализ 1 курс]] | ||
| − | |||
== Определения == | == Определения == | ||
{{Определение | {{Определение | ||
| Строка 15: | Строка 14: | ||
Если <tex> A \subset \mathbb R, \, \exists b, c \in \mathbb R : c \le A \le b </tex>, то A называется '''ограниченным''' множеством. | Если <tex> A \subset \mathbb R, \, \exists b, c \in \mathbb R : c \le A \le b </tex>, то A называется '''ограниченным''' множеством. | ||
}} | }} | ||
| − | |||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
| Строка 22: | Строка 20: | ||
<tex> b = \sup A</tex> ("супремум") | <tex> b = \sup A</tex> ("супремум") | ||
}} | }} | ||
| − | |||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
| Строка 49: | Строка 46: | ||
}} | }} | ||
| − | =Принцип вложенных отрезков= | + | == Принцип вложенных отрезков == |
{{Определение | {{Определение | ||
| Строка 61: | Строка 58: | ||
По аналогии определяются и промежутки типа <tex> (a, b] </tex>. | По аналогии определяются и промежутки типа <tex> (a, b] </tex>. | ||
}} | }} | ||
| − | |||
{{Определение | {{Определение | ||
Версия 02:51, 16 декабря 2010
Определения
| Определение: |
| Если , то A называется ограниченным сверху множеством.
называется верхней границей множества А. Если , то A называется ограниченным снизу множеством. называется нижней границей множества А. Если , то A называется ограниченным множеством. |
| Определение: |
| Если — ограничено сверху, то наимешьшая из его верхних границ называется верхней гранью. ("супремум") |
| Определение: |
| Если — ограничено снизу, то наибольшая из его нижних границ называется нижней гранью. ("инфимум") |
Существование грани множества
| Теорема: |
Если А ограничено сверху, то у него существует верхняя грань (Аналогично для А, ограниченного снизу). |
| Доказательство: |
|
Пусть M — множество верхних границ А. Так как А ограничено сверху, то . По определению верхней границы: . По аксиоме непрерывности: :
Получили, что d - верхняя граница А, и d не больше всех верхних границ А . Аналогично для нижней грани ограниченного снизу множества А. |
Принцип вложенных отрезков
| Определение: |
| Множество называется интервалом или открытым промежутком.
Множество называется отрезком или замкнутым промежутком. Обозначение (промежуток) используется, когда неизвестно включение границ. По аналогии определяются и промежутки типа . |
| Определение: |
| Пусть дана система отрезков:
Тогда эта система отрезков называется вложенной. |
| Утверждение: |
|
Определим следующие числовые множества:
Пусть . и существуют. В силу вложенности отрезков: |
Исходя из определения граней, если: