Критерий Тарьяна минимальности остовного дерева — различия между версиями
Filchenko (обсуждение | вклад) м (фикс2) |
Filchenko (обсуждение | вклад) м (фикс3) |
||
| Строка 5: | Строка 5: | ||
Остовное дерево минимально тогда и только тогда, когда любое ребро не из дерева является максимальным на цмкле, который образуется при его добавлении в дерево | Остовное дерево минимально тогда и только тогда, когда любое ребро не из дерева является максимальным на цмкле, который образуется при его добавлении в дерево | ||
|proof= | |proof= | ||
| + | Легко заметить, что остовное дерево, не удовлетворяющее условию, не минимально: | ||
Если существует ребро, не максимальное на образовавшемся цикле мы можем уменьшить вес дерева, добавив это ребро и удалив максимальное. | Если существует ребро, не максимальное на образовавшемся цикле мы можем уменьшить вес дерева, добавив это ребро и удалив максимальное. | ||
| + | |||
| + | Теперь докажем, что дерево, удовлетворяющее условию минимально: | ||
Обозначим дерево <tex>T</tex>, покажем что его можно построить алгоритмом Крускала. | Обозначим дерево <tex>T</tex>, покажем что его можно построить алгоритмом Крускала. | ||
Версия 20:04, 8 декабря 2010
| Теорема (критерий минимальности остовного дерева Тарьяна): |
Остовное дерево минимально тогда и только тогда, когда любое ребро не из дерева является максимальным на цмкле, который образуется при его добавлении в дерево |
| Доказательство: |
|
Легко заметить, что остовное дерево, не удовлетворяющее условию, не минимально: Если существует ребро, не максимальное на образовавшемся цикле мы можем уменьшить вес дерева, добавив это ребро и удалив максимальное. Теперь докажем, что дерево, удовлетворяющее условию минимально: Обозначим дерево , покажем что его можно построить алгоритмом Крускала. Индукция по количеству ребер в дереве: База: пустое дерево. Строим дерево по лемме о безопасном ребре. Переход: Рассмотрим минимальное невзятое ребро Рассмотрим разрез, окружающий одну из двух компонент Пусть не минимально в разрезе, тогда существует такое, что . При добавлении в дерево Некое ребро , такое что будет лежать на цикле. Противоречие условию теоремы. Если минимально - добавим его в . По окончании (просмотрели все ребра ) совпадет с |