Обсуждение участницы:Анна — различия между версиями
Анна (обсуждение | вклад) |
Анна (обсуждение | вклад) (→Помеченные графы) |
||
| Строка 45: | Строка 45: | ||
Иными словами, количество способов пометить вершины графа можно вычислить, зная количество и порядки групп помеченных графов, изоморфных друг другу (внутри одной группы). Например, для дерева-цепочки, состоящей из двух и более вершин, такая группа включает два элемента: тождественную перестановку и отражение относительно середины. Следовательно, ее порядок равен двум. | Иными словами, количество способов пометить вершины графа можно вычислить, зная количество и порядки групп помеченных графов, изоморфных друг другу (внутри одной группы). Например, для дерева-цепочки, состоящей из двух и более вершин, такая группа включает два элемента: тождественную перестановку и отражение относительно середины. Следовательно, ее порядок равен двум. | ||
| − | |||
| − | |||
{| cellpadding="2" | {| cellpadding="2" | ||
| || [[Файл:Перечисл2.jpg|thumb|left|720px|Рис. 2. Помеченные деревья с четырьмя вершинами.]] | | || [[Файл:Перечисл2.jpg|thumb|left|720px|Рис. 2. Помеченные деревья с четырьмя вершинами.]] | ||
|} | |} | ||
| + | |||
| + | Рассмотрим пример. На рисунке 2 изображены все помеченные деревья с четырьмя вершинами. Всего их <tex>16</tex>. Среди них <tex>12</tex> изоморфны цепи <tex>P_{4}</tex> и <tex>4</tex> {{---}} графу <tex>K_{1, 3}</tex>. Порядок группы <tex>\Gamma(P_{4})</tex>, как было сказано выше, равен <tex>2</tex>. Порядок группы <tex>K_{1, 3} = 6</tex>. Так как <tex>p = 4</tex>, то имеем <tex dpi = "160">\frac{4!}{|\Gamma(P_{4})|} = 12</tex> и <tex dpi = "160">\frac{4!}{|\Gamma(K_{1, 3})|} = 4</tex>. | ||
== Теорема перечисления Пойа == | == Теорема перечисления Пойа == | ||
Версия 22:31, 27 декабря 2015
Перечисления графов
Помеченные графы
| Определение: |
| Помеченный граф с вершинами — граф, у которого каждая вершина помечена целым числом от до . |
Более формально определить это понятие можно так: назовем распределением меток в графе с вершинами биекцию между множеством вершин графа и множеством . Тогда помеченным графом называется пара .
| Определение: |
| Два помеченных графа и изоморфны, если существует изоморфизм между и , сохраняющий распределение меток. |
Все помеченные графы с тремя вершинами показаны на рисунке 1. различных графа с вершинами приводят к различным помеченным графам.
Для нахождения числа помеченных графов с вершинами нужно заметить, что каждое из возможных ребер либо принадлежит графу, либо нет.
| Теорема (1): |
Число помеченных графов с вершинами равно . |
Следовательно, число помеченных графов с ребрами равно .
| Теорема (Кэли): |
Число помеченных деревьев с вершинами равно . |
| Теорема (2): |
Данный граф можно пометить способами. |
| Доказательство: |
|
Приведем набросок доказательства. Пусть — группа подстановок, действующая на множестве . Для всякого элемента орбитой элемента называется подмножество множества , состоящее из всех элементов таких, что для некоторой подстановки из . Стабилизатором элемента называется подгруппа группы , состоящая из всех подстановок из , оставляющих элемент неподвижным. Теорема является следствием соотношения и его интерпретации в настоящем контексте. |
Иными словами, количество способов пометить вершины графа можно вычислить, зная количество и порядки групп помеченных графов, изоморфных друг другу (внутри одной группы). Например, для дерева-цепочки, состоящей из двух и более вершин, такая группа включает два элемента: тождественную перестановку и отражение относительно середины. Следовательно, ее порядок равен двум.
Рассмотрим пример. На рисунке 2 изображены все помеченные деревья с четырьмя вершинами. Всего их . Среди них изоморфны цепи и — графу . Порядок группы , как было сказано выше, равен . Порядок группы . Так как , то имеем и .