Турниры — различия между версиями
Roman (обсуждение | вклад) |
Roman (обсуждение | вклад) |
||
| Строка 3: | Строка 3: | ||
}} | }} | ||
| − | + | Имя турнир исходит из графической интерпретации исходов кругового турнира, в котором каждый игрок встречается в схватке с каждым другим игроком ровно раз, и в котором не может быть ничьих. В орграфе турнира вершины соответствуют игрокам. Дуга между каждой парой игроков ориентирована от выигравшего к проигравшему. Если игрок <tex>a</tex> побеждает игрока <tex>b</tex>, то говорят, что <tex>a</tex> доминирует над <tex>b</tex>. | |
[[Файл:Tournament_1_3.png|415px|thumb|left|Турниры из трех вершин]] | [[Файл:Tournament_1_3.png|415px|thumb|left|Турниры из трех вершин]] | ||
| Строка 11: | Строка 11: | ||
==Оценка количества турниров в графе== | ==Оценка количества турниров в графе== | ||
Если в турнире опустить ориентацию ребер, то мы получим полный граф. А так как существует два варианта ориентации каждого ребра, то количество турниров в графе из <tex>n</tex> вершин равно <tex dpi=150>2^{\frac{n\cdot(n-1)}{2}}</tex>. | Если в турнире опустить ориентацию ребер, то мы получим полный граф. А так как существует два варианта ориентации каждого ребра, то количество турниров в графе из <tex>n</tex> вершин равно <tex dpi=150>2^{\frac{n\cdot(n-1)}{2}}</tex>. | ||
| + | ==Транзитивность== | ||
| + | |||
| + | [[Файл:Tournament_transitive.png|300px|thumb|right|Транзитивный турнир с 8 вершинами]] | ||
| + | Турнир, в котором <tex>((a \rightarrow b)\&(b \rightarrow c)) \Rightarrow (a \rightarrow c)</tex>, называется транзитивным. В транзитивном турнире вершины могут быть полностью упорядочены в порядке достижимости. | ||
| + | |||
| + | Следующие утверждения для турнира с n вершинами эквивалентны: | ||
| + | *<tex>T</tex> транзитивен. | ||
| + | *<tex>T</tex> ацикличен. | ||
| + | *<tex>T</tex> не содержит циклов длины 3. | ||
| + | *Последовательность числа выигрышей (множество полуисходов) <tex>T</tex> есть <tex> 0, 1, 2,..., n - 1 </tex>. | ||
| + | *<tex>T</tex> содержит ровно один гамильтонов путь. | ||
| + | <br clear="all"> | ||
| + | |||
| + | ==Парадоксальные турниры== | ||
| + | Игрок, выигравший все игры, естественно, будет победителем турнира. Однако, как показывает существование нетранзитивных турниров, такого игрока может не оказаться. Турнир, в котором каждый игрок проигрывает хотя бы одну игру называется 1-парадоксальным турниром. Обобщая, Турнир <tex>T=(V,E)</tex> называется <tex>k</tex>-парадоксальным, если для любого <tex>k</tex>-элементного подмножества <tex>S</tex> множества <tex>V</tex> существует вершина <tex>v_0</tex> в <tex>V\setminus S</tex>, такая что <tex>v_0 \rightarrow v</tex> для всех <tex>v \in S</tex>. | ||
| + | |||
| + | ==Конденсация== | ||
| + | Конденсация любого турнира является транзитивным турниром. Таким образом, даже если турнир не является транзитивным, сильно связанные компоненты турнира могут быть полностью упорядочены. | ||
==Сильно связные турниры== | ==Сильно связные турниры== | ||
{{Определение|definition = Турнир называется [[Отношение связности, компоненты связности#sc_def |сильно связным]], если из любой вершины существуют пути до всех других.}} | {{Определение|definition = Турнир называется [[Отношение связности, компоненты связности#sc_def |сильно связным]], если из любой вершины существуют пути до всех других.}} | ||
| Строка 21: | Строка 39: | ||
| − | Не все турниры гамильтоновы. Определение не исключает существование вершины с | + | Не все турниры гамильтоновы. Определение не исключает существование вершины с <tex>deg^{-}</tex> или <tex>deg^{+}</tex> равной нулю — в первую нельзя войти, а из второй — выйти. Однако отсутствие таких вершин не означает, что турнир гамильтонов (пример — на рисунке справа). |
[[Теорема Редеи-Камиона]] устанавливает 2 следующих факта: | [[Теорема Редеи-Камиона]] устанавливает 2 следующих факта: | ||
Версия 21:17, 7 ноября 2015
| Определение: |
| Турнир (англ. Tournament) — ориентированный граф, между любой парой различных вершин которого есть ровно одно ориентированное ребро. |
Имя турнир исходит из графической интерпретации исходов кругового турнира, в котором каждый игрок встречается в схватке с каждым другим игроком ровно раз, и в котором не может быть ничьих. В орграфе турнира вершины соответствуют игрокам. Дуга между каждой парой игроков ориентирована от выигравшего к проигравшему. Если игрок побеждает игрока , то говорят, что доминирует над .
Содержание
Оценка количества турниров в графе
Если в турнире опустить ориентацию ребер, то мы получим полный граф. А так как существует два варианта ориентации каждого ребра, то количество турниров в графе из вершин равно .
Транзитивность
Турнир, в котором , называется транзитивным. В транзитивном турнире вершины могут быть полностью упорядочены в порядке достижимости.
Следующие утверждения для турнира с n вершинами эквивалентны:
- транзитивен.
- ацикличен.
- не содержит циклов длины 3.
- Последовательность числа выигрышей (множество полуисходов) есть .
- содержит ровно один гамильтонов путь.
Парадоксальные турниры
Игрок, выигравший все игры, естественно, будет победителем турнира. Однако, как показывает существование нетранзитивных турниров, такого игрока может не оказаться. Турнир, в котором каждый игрок проигрывает хотя бы одну игру называется 1-парадоксальным турниром. Обобщая, Турнир называется -парадоксальным, если для любого -элементного подмножества множества существует вершина в , такая что для всех .
Конденсация
Конденсация любого турнира является транзитивным турниром. Таким образом, даже если турнир не является транзитивным, сильно связанные компоненты турнира могут быть полностью упорядочены.
Сильно связные турниры
| Определение: |
| Турнир называется сильно связным, если из любой вершины существуют пути до всех других. |
| Определение: |
| Турнир называется гамильтоновым, если он содержит гамильтонов цикл. |
Не все турниры гамильтоновы. Определение не исключает существование вершины с или равной нулю — в первую нельзя войти, а из второй — выйти. Однако отсутствие таких вершин не означает, что турнир гамильтонов (пример — на рисунке справа).
Теорема Редеи-Камиона устанавливает 2 следующих факта:
- Все турниры полугамильтоновы.
- Турнир гамильтонов тогда и только тогда, когда он сильно связен.
См. также
Источники информации
- Асанов М. О., Баранский В. А., Расин В. В. Дискретная математика: графы, матроиды, алгоритмы — НИЦ РХД, 2001. — ISBN 5-93972-076-5
