Прямая сумма матроидов — различия между версиями
Shersh (обсуждение | вклад) |
(→Прямая сумма матроидов) |
||
| Строка 2: | Строка 2: | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
| − | Пусть <tex>M_1 = \langle X_1, I_1 \rangle </tex> и <tex> M_2 = \langle X_2, I_2 \rangle </tex> — матроиды с непересекающимися носителями (<tex>X_1 \cap X_2 = \varnothing</tex>) и <tex>X = X_1 \cup X_2, \ I = \ | + | Пусть <tex>M_1 = \langle X_1, I_1 \rangle </tex> и <tex> M_2 = \langle X_2, I_2 \rangle </tex> — матроиды с непересекающимися носителями (<tex>X_1 \cap X_2 = \varnothing</tex>) и <tex>X = X_1 \cup X_2, \ I = \{ A \mid A = A_1 \cup A_2, A_1 \in I_1, A_2 \in I_2 \}</tex>, тогда <tex> M_1 \oplus M_2 = \langle X, I\rangle</tex> называется '''прямой суммой матроидов'''. |
}} | }} | ||
{{Утверждение | {{Утверждение | ||
| Строка 19: | Строка 19: | ||
Так как <tex>A_1 \subset B_1 \Rightarrow A_1 \in I_1</tex> (по второй аксиоме для <tex>I_1</tex>). Аналогично <tex>A_2 \in I_2</tex>. Значит <tex>A_1 \cup A_2 \in I</tex>. | Так как <tex>A_1 \subset B_1 \Rightarrow A_1 \in I_1</tex> (по второй аксиоме для <tex>I_1</tex>). Аналогично <tex>A_2 \in I_2</tex>. Значит <tex>A_1 \cup A_2 \in I</tex>. | ||
| − | 3. <tex>A \in I, \ B \in I, \ \left\vert A \right\vert < \left\vert B \right\vert \Rightarrow \ | + | 3. <tex>A \in I, \ B \in I, \ \left\vert A \right\vert < \left\vert B \right\vert \Rightarrow \exists ~ x \in B \setminus A, \ A \cup \{ x \} \in I</tex> |
Пусть <tex>A = A_1 \cup A_2</tex>, <tex>B = B_1 \cup B_2</tex>, тогда <tex>\left\vert A_1 \right\vert < \left\vert B_1 \right\vert </tex> или <tex>\left\vert A_2 \right\vert < \left\vert B_2 \right\vert </tex>. | Пусть <tex>A = A_1 \cup A_2</tex>, <tex>B = B_1 \cup B_2</tex>, тогда <tex>\left\vert A_1 \right\vert < \left\vert B_1 \right\vert </tex> или <tex>\left\vert A_2 \right\vert < \left\vert B_2 \right\vert </tex>. | ||
| − | В первом случае из третьей аксиомы для <tex> I_1 \Rightarrow \ | + | В первом случае из третьей аксиомы для <tex> I_1 \Rightarrow \exists~ x \in B_1 \setminus A_1, \ A_1 \cup \{ x \} \in I_1 </tex>. Значит <tex> A_1 \cup \{ x \} \cup A_2 \in I</tex>. |
Второй случай аналогичен первому. | Второй случай аналогичен первому. | ||
Версия 12:20, 13 июня 2018
Прямая сумма матроидов
| Определение: |
| Пусть и — матроиды с непересекающимися носителями () и , тогда называется прямой суммой матроидов. |
| Утверждение: |
Прямая сумма матроидов является матроидом. |
|
Докажем аксиомы независимости для . 1.
2. Пусть , а . Так как (по второй аксиоме для ). Аналогично . Значит . 3. Пусть , , тогда или . В первом случае из третьей аксиомы для . Значит . Второй случай аналогичен первому. |
Пример разложения матроида в прямую сумму
| Утверждение: |
Разноцветный матроид можно представить в виде прямой суммы универсальных матроидов. |
|
Занумеруем все цвета элементов в множестве от до . Пусть , , где , то есть в элементы одного цвета, а независимыми являются множества, состоящие не более чем из -ого элемента. Тогда является универсальным матроидом. Таким образом, . |