Декомпозиция Эдмондса-Галлаи — различия между версиями
Slavian (обсуждение | вклад) (→Структурная теорема Эдмондса-Галлаи) |
Slavian (обсуждение | вклад) (→Структурная теорема Эдмондса-Галлаи) |
||
| Строка 112: | Строка 112: | ||
2) Из формулы <tex> \alpha(G - A) = \alpha (G) - |A|</tex> следует, что <tex>U1,{...},Un</tex>- компоненты связности графа <tex>G - A</tex>. Для любой вершины <tex>u \in Ui </tex>существует максимальное паросочетание <tex>Mu</tex> графа <tex>G - A</tex>, не содержащее <tex>u</tex>. Так как <tex>Ui</tex> - компонента связности графа <tex>G - A</tex>, паросочетание <tex>Mu</tex> содержит максимальное паросочетание графа <tex>Di</tex> (разумеется, не покрывающее вершину <tex>u</tex>). Следовательно, <tex> \alpha (Di) = \alpha (Di - u) </tex> и по теореме Галлаи(выше) мы получаем, что граф <tex>Di</tex> - фактор-критический. | 2) Из формулы <tex> \alpha(G - A) = \alpha (G) - |A|</tex> следует, что <tex>U1,{...},Un</tex>- компоненты связности графа <tex>G - A</tex>. Для любой вершины <tex>u \in Ui </tex>существует максимальное паросочетание <tex>Mu</tex> графа <tex>G - A</tex>, не содержащее <tex>u</tex>. Так как <tex>Ui</tex> - компонента связности графа <tex>G - A</tex>, паросочетание <tex>Mu</tex> содержит максимальное паросочетание графа <tex>Di</tex> (разумеется, не покрывающее вершину <tex>u</tex>). Следовательно, <tex> \alpha (Di) = \alpha (Di - u) </tex> и по теореме Галлаи(выше) мы получаем, что граф <tex>Di</tex> - фактор-критический. | ||
| − | 3) Пусть <tex>M</tex> - максимальное паросочетание графа <tex>G</tex>, а <tex>M'</tex> получено из <tex>M</tex> удалением всех рёбер, инцидентных вершинам множества <tex>A</tex>. Тогда <tex>|M'| \ge |M| - |A|</tex> и по формуле <tex> \alpha (G - A) = \alpha (G) - |A|</tex> понятно, что <tex>M'</tex> - максимальное паросочетание графа <tex>G - A</tex>. Более того, из <tex> \alpha (G - A) = \alpha (G) - |A|</tex> следует <tex>|M'| = |M| - |A|</tex>, а значит, все вершины множества <tex>A</tex> покрыты в <tex>M</tex> различными | + | 3) Пусть <tex>M</tex> - максимальное паросочетание графа <tex>G</tex>, а <tex>M'</tex> получено из <tex>M</tex> удалением всех рёбер, инцидентных вершинам множества <tex>A</tex>. Тогда <tex>|M'| \ge |M| - |A|</tex> и по формуле <tex> \alpha (G - A) = \alpha (G) - |A|</tex> понятно, что <tex>M'</tex> - максимальное паросочетание графа <tex>G - A</tex>. Более того, из <tex> \alpha (G - A) = \alpha (G) - |A|</tex> следует <tex>|M'| = |M| - |A|</tex>, а значит, все вершины множества <tex>A</tex> покрыты в <tex>M</tex> различными рёбрами. Так как <tex>M'</tex> - максимальное паросочетание графа <tex>G - A</tex>, то по пунктам 1) и 2) очевидно, что <tex>M'</tex> содержит совершенное паросочетание графа <tex>C</tex> и почти совершенные паросочетания фактор-критических графов <tex>D1,{...},Dn</tex>. Значит, рёбра паросочетания <tex>M</tex> соединяют вершины <tex>A</tex> с непокрытыми <tex>M'</tex> вершинами различных компонент связности из <tex>U1,{...},Un</tex>. |
4) Из пункта 3) сразу же следуют оба равенства пункта 4). | 4) Из пункта 3) сразу же следуют оба равенства пункта 4). | ||
Версия 23:37, 15 декабря 2013
| Определение: |
| - количество компонент связности нечетного размера в . |
| Определение: |
| Дефицитом графа G мы будем называть величину: , |
| Теорема (Бержа): |
для любого графа G выполняется: |
| Теорема (Татта-Бержа): |
дан граф , размер максимального паросочетания в нем равен: |
| Определение: |
| Множество , для которого называется барьером. |
Структурная теорема Эдмондса-Галлаи
| Определение: |
необходимые определения:
|
| Теорема (Галлаи): |
- фактор-критический граф - связен и для любой вершины выполняется равенство . |
| Лемма (Галлаи, о стабильности): |
пусть Тогда:
|
| Доказательство: |
|
Достаточно доказать, что . a. Путь кончается ребром из (см. рисунок) b. Путь кончается ребром из , вершина a - конец пути . (см.рисунок) c. Путь кончается ребром из (см. рисунок) Рассмотрим паросочетание . Тогда , причём . Противоречие с максимальностью паросочетания .
|
| Теорема (Галлаи, Эдмондс): |
Пусть G - граф, - компоненты связности графа , . тогда:
1) Граф имеет совершенное паросочетание. |
| Доказательство: |
|
1) Последовательно удаляя вершины множества, по лемме о стабильности мы получим: Это означает, что не существует рёбер, соединяющих вершины из и . Каждое максимальное паросочетание графа покрывает все вершины множества , поэтому содержит совершенное паросочетание графа . Тем самым, мы доказали пункт 1). 2) Из формулы следует, что - компоненты связности графа . Для любой вершины существует максимальное паросочетание графа , не содержащее . Так как - компонента связности графа , паросочетание содержит максимальное паросочетание графа (разумеется, не покрывающее вершину ). Следовательно, и по теореме Галлаи(выше) мы получаем, что граф - фактор-критический. 3) Пусть - максимальное паросочетание графа , а получено из удалением всех рёбер, инцидентных вершинам множества . Тогда и по формуле понятно, что - максимальное паросочетание графа . Более того, из следует , а значит, все вершины множества покрыты в различными рёбрами. Так как - максимальное паросочетание графа , то по пунктам 1) и 2) очевидно, что содержит совершенное паросочетание графа и почти совершенные паросочетания фактор-критических графов . Значит, рёбра паросочетания соединяют вершины с непокрытыми вершинами различных компонент связности из . 4) Из пункта 3) сразу же следуют оба равенства пункта 4). |
| Утверждение (следствие из теоремы): |
- барьер графа |