Оценка сложности вычисления гиперобъема — различия между версиями
| Строка 15: | Строка 15: | ||
|statement= Задача вычисления гиперобъема принадлежит классу #P трудных задач | |statement= Задача вычисления гиперобъема принадлежит классу #P трудных задач | ||
|proof= Суть доказательства состоит в сведении задачи #MON-CNF к задаче вычисления значения гиперобъема. Так как доказано | |proof= Суть доказательства состоит в сведении задачи #MON-CNF к задаче вычисления значения гиперобъема. Так как доказано | ||
| − | <ref> | + | <ref> |
| − | + | Karl Bringmann, Tobias Friedrich, Approximating the volume of unions and intersections of high-dimensional geometric objects, ISAAC'2008, http://www.tex.uniyar.ac.ru/doc/shulmeis.pdf | |
| − | + | </ref> | |
| − | |||
| − | |||
| − | |||
| − | |||
, что #MON-CNF является #P-трудной, то это докажет теорему. | , что #MON-CNF является #P-трудной, то это докажет теорему. | ||
Задача MON-CNF состоит в нахождении количества удовлетворяющих подстановок для | Задача MON-CNF состоит в нахождении количества удовлетворяющих подстановок для | ||
Версия 16:23, 19 июня 2012
Утверждается, что точное вычисление значения гиперобъема множества из точек -мерного пространства является #P-трудной задачей, однако допускает эффективную аппроксимацию, а именно может быть аппроксимировано за
- полином от количества параметров,
- полином от количества решений,
- полином от качества аппроксимации.
#P-трудность задачи вычисления гиперобъема
| Определение: |
| задача #MON-CNF (Satisfability problem for monotone boolean formulas) — задача вычисления количества удовлетворяющих подстановок для монотонной булевой формулы, записанной в КНФ где все дизъюнкты |
| Теорема: |
Задача вычисления гиперобъема принадлежит классу #P трудных задач |
| Доказательство: |
|
Суть доказательства состоит в сведении задачи #MON-CNF к задаче вычисления значения гиперобъема. Так как доказано [1] , что #MON-CNF является #P-трудной, то это докажет теорему. Задача MON-CNF состоит в нахождении количества удовлетворяющих подстановок для Количество ее удовлетворяющих подстановок равно минус количество удовлетворяющих подстановок ее отрицания поэтому далее будем работать с . Для каждого клоза построим гиперкуб где
например, гиперкубу будет соответствовать клоз а клоз . Заметим, что объединение гиперкубов может быть записано как объединение гиперкубов вида , где . Более того,
удовлетворяет для некоторого удовлетворяет Заметим, что так как удовлетворяет Таким образом произвели сведение, в значит задача вычисления гиперобъема принадлежит #P |
Примечания
- ↑ Karl Bringmann, Tobias Friedrich, Approximating the volume of unions and intersections of high-dimensional geometric objects, ISAAC'2008, http://www.tex.uniyar.ac.ru/doc/shulmeis.pdf