Оценка сложности вычисления гиперобъема — различия между версиями
| Строка 14: | Строка 14: | ||
{{Теорема | {{Теорема | ||
|statement= Задача вычисления гиперобъема принадлежит классу #P трудных задач | |statement= Задача вычисления гиперобъема принадлежит классу #P трудных задач | ||
| − | |proof= Суть доказательства состоит в сведении задачи #MON-CNF к задаче вычисления значения гиперобъема. Так как доказано, что #MON-CNF является #P-трудной, то это докажет теорему. | + | |proof= Суть доказательства состоит в сведении задачи #MON-CNF к задаче вычисления значения гиперобъема. Так как доказано |
| + | {{статья | ||
| + | |автор = Karl Bringmann, Tobias Friedrich | ||
| + | |заглавие = Approximating the volume of unions and intersections of high-dimensional geometric objects | ||
| + | |ссылка = http://www.tex.uniyar.ac.ru/doc/shulmeis.pdf | ||
| + | |место = ISAAC'2008 | ||
| + | |год = 2008 | ||
| + | }}</ref><ref> | ||
| + | , что #MON-CNF является #P-трудной, то это докажет теорему. | ||
Задача MON-CNF состоит в нахождении количества удовлетворяющих подстановок для | Задача MON-CNF состоит в нахождении количества удовлетворяющих подстановок для | ||
<tex>f = \bigwedge \limits _{k=1}^n \bigvee_{i \in C_k} x_i</tex> | <tex>f = \bigwedge \limits _{k=1}^n \bigvee_{i \in C_k} x_i</tex> | ||
| Строка 51: | Строка 59: | ||
Таким образом произвели сведение, в значит задача вычисления гиперобъема принадлежит #P | Таким образом произвели сведение, в значит задача вычисления гиперобъема принадлежит #P | ||
}} | }} | ||
| + | |||
| + | = Источники = | ||
| + | http://www.mpi-inf.mpg.de/~kbringma/paper/2008ISAAC_Volume.pdf | ||
Версия 15:08, 19 июня 2012
Утверждается, что точное вычисление значения гиперобъема множества из точек -мерного пространства является #P-трудной задачей, однако допускает эффективную аппроксимацию, а именно может быть аппроксимировано за
- полином от количества параметров,
- полином от количества решений,
- полином от качества аппроксимации.
#P-трудность задачи вычисления гиперобъема
| Определение: |
| задача #MON-CNF (Satisfability problem for monotone boolean formulas) — задача вычисления количества удовлетворяющих подстановок для монотонной булевой формулы, записанной в КНФ где все дизъюнкты |
| Теорема: |
Задача вычисления гиперобъема принадлежит классу #P трудных задач |
| Доказательство: |
|
Суть доказательства состоит в сведении задачи #MON-CNF к задаче вычисления значения гиперобъема. Так как доказано </ref><ref> , что #MON-CNF является #P-трудной, то это докажет теорему. Задача MON-CNF состоит в нахождении количества удовлетворяющих подстановок для Количество ее удовлетворяющих подстановок равно минус количество удовлетворяющих подстановок ее отрицания поэтому далее будем работать с . Для каждого клоза построим гиперкуб где
например, гиперкубу будет соответствовать клоз а клоз . Заметим, что объединение гиперкубов может быть записано как объединение гиперкубов вида , где . Более того,
удовлетворяет для некоторого удовлетворяет Заметим, что так как удовлетворяет Таким образом произвели сведение, в значит задача вычисления гиперобъема принадлежит #P |
Источники
http://www.mpi-inf.mpg.de/~kbringma/paper/2008ISAAC_Volume.pdf