Лемма о соотношении coNP и IP — различия между версиями
м |
м |
||
| Строка 78: | Строка 78: | ||
:Так как на последнем шаге ''Verifier'' сверяет истинное значение с полученным от ''Prover'', слово будет допущено только в том случае, когда ''Prover'' смог прислать верное значение, что в свою очередь возможно лишь если на одном из предыдущих шагов был верно угадан корень полинома. | :Так как на последнем шаге ''Verifier'' сверяет истинное значение с полученным от ''Prover'', слово будет допущено только в том случае, когда ''Prover'' смог прислать верное значение, что в свою очередь возможно лишь если на одном из предыдущих шагов был верно угадан корень полинома. | ||
: | : | ||
| + | :Посчитаем вероятность того, что ''Verifier'' хотя бы раз угадал корень. | ||
:<tex>P(\mathit{Verifier^{Prover}}(\langle \varphi, k \rangle)=1) = 1 - (1 - \frac d p)^m \le 1 - (1 - \frac d {3dm})^m \le \frac 1 3</tex>. | :<tex>P(\mathit{Verifier^{Prover}}(\langle \varphi, k \rangle)=1) = 1 - (1 - \frac d p)^m \le 1 - (1 - \frac d {3dm})^m \le \frac 1 3</tex>. | ||
Версия 16:25, 4 июня 2012
| Определение: |
| имеет ровно удовлетворяющих наборов . |
| Лемма (1): |
. |
| Доказательство: |
| Следует из леммы (1). |
| Лемма (2): |
. |
| Доказательство: |
|
Для доказательства леммы построим программы Verifier и Prover из определения класса . Сперва арифметизуем формулу . Пусть полученный полином имеет степень . По лемме (1) вместо условия , можно проверять условие . Приступим к описанию Verifier'а. Шаг 0 Если или , то Verifier может проверить указанное выше условие сам и вернуть соответствующий результат. Иначе запросим у Prover'а такое простое число , что (такое существует в силу постулата Бертрана). Проверим на простоту и на принадлежность заданному промежутку. Как мы знаем, , следовательно на эти операции у Verifier'а уйдёт полиномиальное от размера входа время. Далее будем проводить все вычисления модулю . Попросим Prover 'а прислать Verifier 'у формулу . Заметим, что размер формулы будет полином от длины входа Verifier 'а, так как — полином степени не выше, чем , от одной переменной, а значит его можно представить в виде . Проверим следующее утверждение: (*) (здесь и далее под словом «проверим» будем подразумевать следующее: если утверждение верно, Verifier продолжает свою работу, иначе он прекращает свою работу и возвращет false). Шаг i Пусть . Отправим программе Prover. Попросим Prover 'а прислать Verifier 'у формулу . Проверим следующее утверждение: (*). Шаг m Пусть . Отправим программе Prover. Попросим программу Prover прислать Verifier 'у значение . Проверим следующее утверждение: (*). А также сами подставим в и проверим правильность присланного значения . Возвращаем true. Докажем теперь, что построенный таким образом Verifier — корректный. Для этого нужно доказать следующие утверждения:
Докажем эти утверждения.
|
| Лемма (3): |
. |
| Доказательство: |
|
Сведём язык к языку следующим образом: , где — количество различных переменных в формуле . Очевидно, что . По лемме (2) . Тогда . Так как , то . |