Алгоритм Флойда — Уоршалла — различия между версиями
(→Алгоритм) |
|||
| Строка 14: | Строка 14: | ||
W[i][j] = W[i][j] or (W[i][k] and W[k][j]) | W[i][j] = W[i][j] or (W[i][k] and W[k][j]) | ||
| − | |||
| − | |||
| − | |||
=== Сложность алгоритма === | === Сложность алгоритма === | ||
Три вложенных цикла работают за время <tex>\sum\limits_{n}\sum\limits_{n}\sum\limits_{n}O(1) = O(n^3)</tex>, | Три вложенных цикла работают за время <tex>\sum\limits_{n}\sum\limits_{n}\sum\limits_{n}O(1) = O(n^3)</tex>, | ||
Версия 03:01, 12 декабря 2011
Задача
Пусть дано отношение на множестве . Необходимо построить его транзитивное замыкание .
Алгоритм
Сформулируем нашу задачу в терминах графов: рассмотрим граф , соответствующий отношению . Тогда необходимо найти все пары вершин , соединенных некоторым путем. Иными словами, требуется построить новое отношение , которое будет состоять из всех пар таких, что найдется последовательность , где .
Псевдокод
Изначально матрица заполняется соответственно отношению , то есть . Затем внешним циклом перебираются все элементы множества и для каждого из них, если он может использоваться, как промежуточный для соединения двух элементов и , отношение расширяется добавлением в него пары .
for k = 1 to n
for i = 1 to n
for j = 1 to n
W[i][j] = W[i][j] or (W[i][k] and W[k][j])
Сложность алгоритма
Три вложенных цикла работают за время , то есть алгоритм имеет кубическую сложность.
Ссылки
- Реализация алгоритма Флойда на С++
- Реализация алгоритма Флойда на Delphi
- Визуализатор
- Википедия — свободная энциклопедия
Источники
- Романовский И. В. Дискретный анализ: Учебное пособие для студентов, специализирующихся по прикладной математике и информатике. Изд. 3-е. — СПб.: Невский диалект, 2003. — 320 с. — ISBN 5-7940-0114-3.