Удаление eps-правил из грамматики — различия между версиями
м (→Алгоритм удаления ε-правил из грамматики) |
(→Доказательство корректности) |
||
| Строка 19: | Строка 19: | ||
=== Доказательство корректности === | === Доказательство корректности === | ||
{{Теорема | {{Теорема | ||
| − | |statement = Если грамматика <tex>G'</tex> была построена с помощью описанного выше алгоритма по грамматике <tex>G</tex>, то <tex>L(G') = L(G) | + | |statement = Если грамматика <tex>G'</tex> была построена с помощью описанного выше алгоритма по грамматике <tex>G</tex>, то <tex>L(G') = L(G)</tex>. |
|proof = | |proof = | ||
| + | Сначала докажем, что если не выполнять шаг 5 алгоритма, то получится грамматика <tex>G' : L(G') = L(G) \setminus \lbrace \varepsilon \rbrace </tex>.<br/> | ||
Для этого достаточно доказать, что | Для этого достаточно доказать, что | ||
<tex>A \underset{G'}{\Rightarrow}^*w</tex> тогда и только тогда, когда <tex>A \underset{G}{\Rightarrow}^*w</tex> и <tex>w \ne \varepsilon</tex> (*). | <tex>A \underset{G'}{\Rightarrow}^*w</tex> тогда и только тогда, когда <tex>A \underset{G}{\Rightarrow}^*w</tex> и <tex>w \ne \varepsilon</tex> (*). | ||
<tex>\Rightarrow)</tex><br\> | <tex>\Rightarrow)</tex><br\> | ||
| − | Пусть <tex>A \underset{G'}{\Rightarrow}^*w | + | Пусть <tex>A \underset{G'}{\Rightarrow}^*w, w \ne \varepsilon</tex>.<br/> |
| − | + | Докажем индукцией по длине порождения, что <tex>A \underset{G}{\Rightarrow}^*w</tex>.<br/> | |
| − | :'''Базис'''. <tex> | + | :'''Базис'''. Пусть <tex>A \underset{G'}{\Rightarrow}^*w</tex>.<br/> |
| − | В этом случае в <tex>G'</tex> есть правило <tex>A \rightarrow w</tex>. Согласно конструкции <tex>G'</tex> в <tex>G</tex> есть правило <tex>A \rightarrow \alpha</tex>, причем <tex>\alpha | + | В этом случае в <tex>G'</tex> есть правило <tex>A \rightarrow w</tex>. Согласно конструкции <tex>G'</tex> в <tex>G</tex> есть правило <tex>A \rightarrow \alpha</tex>, причем <tex>\alpha</tex> — цепочка <tex>w</tex>, символы которой, возможно, перемежаются <tex>\varepsilon</tex>-порождающими нетерминалами. Тогда в <tex>G</tex> есть порождения <tex>A \underset{G}{\Rightarrow} \alpha \underset{G}{\Rightarrow}w</tex>.<br/> |
| − | :'''Предположение'''. Пусть из <tex>A \underset{G'}{\Rightarrow}^*w</tex> следует, что <tex>A \underset{G}{\Rightarrow}^*w</tex> и <tex>w \ne \varepsilon</tex> | + | :'''Предположение'''. Пусть из <tex>A \underset{G'}{\Rightarrow}^*w</tex> следует, что <tex>A \underset{G}{\Rightarrow}^*w</tex> и <tex>w \ne \varepsilon</tex> менее, чем за <tex>n</tex> шагов.<br/> |
| − | :'''Переход'''. | + | :'''Переход'''. <br/> |
Пусть в порождении <tex>n</tex> шагов, <tex>n > 1</tex>. Тогда оно имеет вид <tex>A\underset{G'}{\Rightarrow}X_1 X_2...X_k | Пусть в порождении <tex>n</tex> шагов, <tex>n > 1</tex>. Тогда оно имеет вид <tex>A\underset{G'}{\Rightarrow}X_1 X_2...X_k | ||
| − | \underset{G'}{\Rightarrow} | + | \underset{G'}{\Rightarrow}^*w</tex>, где <tex>X_i \in N \cup \Sigma </tex>. Первое использованное правило должно быть построено по правилу <tex>A \rightarrow Y_1 Y_2...Y_m</tex>, где цепочка <tex>Y_1 Y_2...Y_m</tex> совпадает с цепочкой <tex>X_1 X_2...X_k</tex>, цепочка <tex>Y_1 Y_2...Y_m</tex>, возможно, перемежаются <tex>\varepsilon</tex>-порождающими нетерминалами.<br/> |
| − | Цепочку <tex>w</tex> можно разбить на <tex>w_1 w_2...w_k</tex>, где <tex>X_i \underset{G'}{\Rightarrow}^*w_i</tex>. Если <tex>X_i</tex> | + | Цепочку <tex>w</tex> можно разбить на <tex>w_1 w_2...w_k</tex>, где <tex>X_i \underset{G'}{\Rightarrow}^*w_i</tex>. Если <tex>X_i</tex> — терминал, то <tex>w_i = X_i</tex>, a если нетерминал, то порождение <tex>X_i \underset{G'}{\Rightarrow}^*w_i</tex> содержит менее <tex>n</tex> шагов.<br/> По предположению <tex>X_i \underset{G}{\Rightarrow}^*w_i</tex>.<br/> |
Теперь построим соответствующее порождение в <tex>G</tex>.<br/> | Теперь построим соответствующее порождение в <tex>G</tex>.<br/> | ||
:<tex>A \underset {G}{\Rightarrow} Y_1 Y_2...Y_m \underset{G}{\Rightarrow}^* X_1 X_2...X_k \underset{G}{\Rightarrow}^* w_1 w_2...w_k = w</tex><br/> | :<tex>A \underset {G}{\Rightarrow} Y_1 Y_2...Y_m \underset{G}{\Rightarrow}^* X_1 X_2...X_k \underset{G}{\Rightarrow}^* w_1 w_2...w_k = w</tex><br/> | ||
Версия 03:14, 6 декабря 2011
Содержание
Используемые определения
| Определение: |
| Правила вида называются -правилами. |
| Определение: |
| Нетерминал называется -порождающим, если . |
Алгоритм удаления ε-правил из грамматики
Вход: КС грамматика .
Выход: КС грамматика без -правил (возможно правило , но в этом случае не встречается в правых частях правил). .
- Найти все -порождаюшие нетерминалы.
- Добавить все правила из в .
- Рассмотрим правила вида (*) , где — последовательности из терминалов и нетерминалов, — -порождающие нетерминалы. Добавить все возможные правила вида (*) в , в которых либо присутствует, либо отсутствует .
- Удалить все -правила из .
- Если в исходной грамматике выводилось пустое слово , то необходимо добавить новый нетерминал , сделать его стартовым, добавить правила .
Доказательство корректности
| Теорема: |
Если грамматика была построена с помощью описанного выше алгоритма по грамматике , то . |
| Доказательство: |
|
Сначала докажем, что если не выполнять шаг 5 алгоритма, то получится грамматика . <br\>
Пусть .
В этом случае в есть правило . Согласно конструкции в есть правило , причем — цепочка , символы которой, возможно, перемежаются -порождающими нетерминалами. Тогда в есть порождения .
Пусть в порождении шагов, . Тогда оно имеет вид , где . Первое использованное правило должно быть построено по правилу , где цепочка совпадает с цепочкой , цепочка , возможно, перемежаются -порождающими нетерминалами. Ч.т.д.
является правилом в . Поскольку , это же правило будет и в , поэтому .
Пусть в порождении шагов, . Тогда оно имеет вид , где . Цепочку можно разбить на , где . |
Алгоритм поиска ε-порождающих нетерминалов
Вход: КС грамматика .
Выход: множество -порождающих нетерминалов.
- Пусть — множество -порождающих нетерминалов. Добавить все нетерминалы, из которых непосредственно можно вывести , в множество .
- Если найдено правило , для которого верно, что каждый — -порождающий нетерминал, то добавить в множество .
- Если на шаге 2 множество изменилось, то повторить шаг 2.
| Теорема: |
Нетерминал является -порождающим тогда и только тогда, если выполнено одно из следующих условий:
|
| Доказательство: |
|
Индукция по длине кратчайшего порождения . База. , то есть в грамматике имеется правило . Следовательно, — -порождающий нетерминал. Переход. Пусть за шагов. Тогда первый шаг порождения , где за менее, чем шагов. По индукционному предположению каждый нетерминал обнаруживается как -порождающий. Тогда нетерминал — -порождающий. |
Литература
- Хопкрофт Д., Мотвани Р., Ульман Д. Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — С. 273: ISBN 5-8459-0261-4 (рус.)