Удаление eps-правил из грамматики — различия между версиями
(→Доказательство корректности алгоритма) |
(→Доказательство корректности алгоритма) |
||
| Строка 57: | Строка 57: | ||
Пусть в порождении <tex>n</tex> шагов, <tex>n > 1</tex>. Тогда оно имеет вид <tex>A\underset{G'}{\Rightarrow}X_1 X_2...X_k | Пусть в порождении <tex>n</tex> шагов, <tex>n > 1</tex>. Тогда оно имеет вид <tex>A\underset{G'}{\Rightarrow}X_1 X_2...X_k | ||
\overset{*}{\underset{G'}{\Rightarrow}}w</tex>, где <tex>X_i \in N \cup \Sigma </tex>. Первое использованное правило должно быть построено по правилу <tex>A \rightarrow Y_1 Y_2...Y_m</tex>, где цепочка <tex>Y_1 Y_2...Y_m</tex> совпадает с цепочкой <tex>X_1 X_2...X_k</tex>, цепочка <tex>Y_1 Y_2...Y_m</tex>, возможно, перемежаются <tex>\varepsilon-</tex> порождающими нетерминалами.<br/> | \overset{*}{\underset{G'}{\Rightarrow}}w</tex>, где <tex>X_i \in N \cup \Sigma </tex>. Первое использованное правило должно быть построено по правилу <tex>A \rightarrow Y_1 Y_2...Y_m</tex>, где цепочка <tex>Y_1 Y_2...Y_m</tex> совпадает с цепочкой <tex>X_1 X_2...X_k</tex>, цепочка <tex>Y_1 Y_2...Y_m</tex>, возможно, перемежаются <tex>\varepsilon-</tex> порождающими нетерминалами.<br/> | ||
| − | Цепочку <tex>w</tex> можно разбить на <tex>w_1 w_2...w_k</tex>, где <tex>X_i \overset{*}{\underset{G'}{\Rightarrow}}w_i</tex>. Если <tex>X_i</tex> есть терминал, то <tex> | + | Цепочку <tex>w</tex> можно разбить на <tex>w_1 w_2...w_k</tex>, где <tex>X_i \overset{*}{\underset{G'}{\Rightarrow}}w_i</tex>. Если <tex>X_i</tex> есть терминал, то <tex>w_i = X_i</tex>, a если нетерминал, то порождение <tex>X_i \overset{*}{\underset{G'}{\Rightarrow}}w_i</tex> содержит менее <tex>n</tex> шагов.<br/> По предположению <tex>X_i \overset{*}{\underset{G}{\Rightarrow}}w_i</tex>.<br/> |
Теперь построим соответствующее порождение в <tex>G</tex>.<br/> | Теперь построим соответствующее порождение в <tex>G</tex>.<br/> | ||
:<tex>A \underset {G}{\Rightarrow} Y_1 Y_2...Y_m \overset{*}{\underset{G}{\Rightarrow}} X_1 X_2...X_k \overset{*}{\underset{G}{\Rightarrow}} w_1 w_2...w_k = w</tex><br/> | :<tex>A \underset {G}{\Rightarrow} Y_1 Y_2...Y_m \overset{*}{\underset{G}{\Rightarrow}} X_1 X_2...X_k \overset{*}{\underset{G}{\Rightarrow}} w_1 w_2...w_k = w</tex><br/> | ||
Версия 19:27, 16 ноября 2011
Содержание
Основные определения
| Определение: |
| Правила вида называются -правилами. |
| Определение: |
Назовем КС грамматику грамматикой без -правил (или неукорачивающей), если либо
|
| Определение: |
| Нетерминал называется -порождающим, если . |
Алгоритм удаления ε-правил из грамматики
Поиск ε-порождающих нетерминалов
Схема алгоритма:
- 1) Если — правило грамматики , то — -порождающий нетерминал.
- 2) Если — правило грамматики , где каждый — -порождающий нетерминал, то — -порождающий нетерминал.
| Теорема: |
Нетерминал является -порождающим тогда и только тогда, когда вышеприведенный алгоритм идентифицирует как -порождающий. |
| Доказательство: |
|
Индукция по длине кратчайшего порождения
|
Схема алгоритма удаления ε-правил из грамматики
Вход. КС грамматика .
Выход. КС грамматика .
Схема алгоритма:
- 1) Найти все -порождаюшие нетерминалы.
- 2) Удалить все -правила из .
- 3) Рассмотрим правила вида (*) , где — последовательности из терминалов и нетерминалов, — -порождающие нетерминалы. Добавить все возможные правила вида (*), в которых либо присутствует, либо отсутствует , кроме правила . Такое правило может возникнуть, если все .
Замечание
Если в исходной грамматике есть правило и встречается в правых частях, то для того, чтобы получить эквивалентную грамматику без -правил, необходимо после применения описанного выше алгоритма добавить новый нетерминал , сделать его стартовым, добавить правила .
Доказательство корректности алгоритма
| Теорема: |
Если грамматика была построена с помощью описанного выше алгоритма по грамматике , то . |
| Доказательство: |
|
Для этого достаточно доказать, что тогда и только тогда, когда и (*). <br\>
Пусть . Несомненно, , поскольку - грамматика без -правил.
В этом случае в есть правило . Согласно конструкции в есть правило , причем это , символы которой, возможно, перемежаются порождающими нетерминалами. Тогда в есть порождения , где на шагах после первого, из всех нетерминалов в цепочке выводиться .
Пусть в порождении шагов, . Тогда оно имеет вид , где . Первое использованное правило должно быть построено по правилу , где цепочка совпадает с цепочкой , цепочка , возможно, перемежаются порождающими нетерминалами. Ч.т.д.
является правилом в . Поскольку , эта же правило будет и в , поэтому .
Пусть в порождении шагов, . Тогда оно имеет вид , где . Цепочку можно разбить на , где . |
Литература
- Хопкрофт Дж., Мотвани Р., Ульман Д.. Введение в теорию автоматов, языков и вычислений, 2-е изд.. : Пер. с англ. ‒ М. : Издательский дом "Вильямс", 2002. ‒ 528 с.