Удаление eps-правил из грамматики — различия между версиями
м (→Схема алгоритма удаления ε-правил из грамматики) |
м (→Основные определения) |
||
| Строка 5: | Строка 5: | ||
}} | }} | ||
{{Определение | {{Определение | ||
| − | |definition = Назовем КС | + | |definition = Назовем КС грамматику <tex>G=(N,\Sigma, P, S)</tex> грамматикой без <tex>\varepsilon</tex>-правил (или неукорачивающей), если либо<br/> |
:(1) <tex>P</tex> не содержит <tex>\varepsilon</tex>-правил, либо | :(1) <tex>P</tex> не содержит <tex>\varepsilon</tex>-правил, либо | ||
:(2) есть точно одно <tex>\varepsilon</tex>-правило <tex>S \to \varepsilon</tex> и <tex>S</tex> не встречается в правых частях остальных правил из <tex>P</tex>. | :(2) есть точно одно <tex>\varepsilon</tex>-правило <tex>S \to \varepsilon</tex> и <tex>S</tex> не встречается в правых частях остальных правил из <tex>P</tex>. | ||
}} | }} | ||
{{Определение | {{Определение | ||
| − | |definition = Нетерминал <tex>A</tex> называется <tex>\varepsilon</tex>-порождающим, если <tex>A \Rightarrow | + | |definition = Нетерминал <tex>A</tex> называется <tex>\varepsilon</tex>-порождающим, если <tex>A \overset{*}{\Rightarrow} \varepsilon</tex>. |
}} | }} | ||
Версия 06:21, 15 ноября 2011
Содержание
Основные определения
| Определение: |
| Правила вида называются -правилами. |
| Определение: |
Назовем КС грамматику грамматикой без -правил (или неукорачивающей), если либо
|
| Определение: |
| Нетерминал называется -порождающим, если . |
Алгоритм удаления ε-правил из грамматики
Поиск ε-порождающих нетерминалов
Схема алгоритма:
- 1) Если — правило грамматики , то —-порождающий нетерминал.
- 2) Если — правило грамматики , где каждый — -порождающий нетерминал, то — -порождающий нетерминал.
| Теорема: |
Нетерминал является -порождающим тогда и только тогда, когда вышеприведенный алгоритм идентифицирует как -порождающий. |
| Доказательство: |
|
Индукция по длине кратчайшего порождения
|
Схема алгоритма удаления ε-правил из грамматики
Вход. КС грамматика .
Выход. КС грамматика .
Схема алгоритма:
- 1) Найти все -порождаюшие нетерминалы.
- 2) Удалить все -правила из .
- 3) Рассмотрим правила вида (*), где — последовательности из терминалов и нетерминалов, — -порождающие нетерминалы. Добавить все возможные правила вида (*), в которых либо присутствует, либо отсутствует , кроме правила . Такое правило может возникнуть, если все .
Замечание
Если в исходной грамматике есть правило и встречается в правых частях, то для того, чтобы получить эквивалентную грамматику без -правил, необходимо после применения описанного выше алгоритма добавить новый нетерминал , сделать его стартовым, добавить правила .
Доказательство корректности алгоритма
| Теорема: |
Если грамматика была построена с помощью описанного выше алгоритма по грамматике , то . |
| Доказательство: |
|
Для этого достаточно доказать, что тогда и только тогда, когда и <br\>
Пусть . Несомненно, , поскольку - грамматика без -правил и .
В этом случае в есть правило . Согласно конструкции в есть правило , причем это , символы которой, возможно, перемежаются порождающими переменными. Тогда в есть порождения , где на шагах после первого, из всех переменных в цепочке выводиться .
Пусть в порождении шагов, . Тогда оно имеет вид , где . Первое использованное правило должно быть построено по правилу , где цепочка совпадает с цепочкой , цепочка , возможно, перемежаются порождающими переменными. Ч.т.д.
является правилом в . Поскольку , эта же правило будет и в , поэтому .
Пусть в порождении шагов, . Тогда оно имеет вид , где . Цепочку можно разбить на , где . |
Теперь можно доказать корректность:
| Утверждение: |
Алгоритм корректен: |
|
Подставив вместо в утверждении выше, видим, что для тогда и только тогда, когда . Очевидно, что тогда и только тогда, когда . Таким образом, . |
Литература
- Ахо Альфред, Джеффри Ульман. Теория Синтаксического Анализа, Перевода и Компиляции. Том 1.
- Джон Хопкрофт, Раджив Мотвани, Джеффри Ульман. Введение в теорию автоматов, языков и вычислений.