Цепные дроби как приближение к числу — различия между версиями
м |
|||
| Строка 1: | Строка 1: | ||
| + | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
| + | |+ | ||
| + | |-align="center" | ||
| + | |'''НЕТ ВОЙНЕ''' | ||
| + | |-style="font-size: 16px;" | ||
| + | | | ||
| + | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
| + | |||
| + | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
| + | |||
| + | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
| + | |||
| + | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
| + | |||
| + | ''Антивоенный комитет России'' | ||
| + | |-style="font-size: 16px;" | ||
| + | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
| + | |-style="font-size: 16px;" | ||
| + | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
| + | |} | ||
| + | |||
[[Цепная дробь|Цепные дроби]] позволяют находить рациональные приближения вещественных чисел. Если действительное иррациональное число <tex>\alpha</tex> разложить в цепную дробь, то точность <tex>n</tex>-ой подходящей дроби будет соответствовать следующему неравенству: | [[Цепная дробь|Цепные дроби]] позволяют находить рациональные приближения вещественных чисел. Если действительное иррациональное число <tex>\alpha</tex> разложить в цепную дробь, то точность <tex>n</tex>-ой подходящей дроби будет соответствовать следующему неравенству: | ||
:<tex>|\alpha-\frac{P_i}{Q_i}| < \frac{1}{Q_i \cdot Q_{i+1}} < \frac{1}{Q_i^2}</tex>. | :<tex>|\alpha-\frac{P_i}{Q_i}| < \frac{1}{Q_i \cdot Q_{i+1}} < \frac{1}{Q_i^2}</tex>. | ||
Версия 07:46, 1 сентября 2022
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Цепные дроби позволяют находить рациональные приближения вещественных чисел. Если действительное иррациональное число разложить в цепную дробь, то точность -ой подходящей дроби будет соответствовать следующему неравенству:
- .
| Лемма (0): |
, где подходящие дроби к . |
| Доказательство: |
| Две последующие подходящие дроби будут лежать по разные стороны от . Значит . По свойствам цепных дробей . Откуда и следует условие теоремы. |
| Теорема (1): |
Для любого иррационального числа существует бесконечное число дробей таких, что . |
| Доказательство: |
|
Рассмотрим две последующие подходящие дроби к и . Пусть ни одна из них не удовлетворяет условию теоремы. Тогда имеем: . Отсюда . Но поскольку лежит между и , то , вследствие чего . Следовательно , что невозможно. Мы пришли к противоречию. Поэтому, по крайней мере для одной из двух подходящих дробей выполнено условие теоремы. Придавая различные значения , получим бесконечное множество дробей, удовлетворяющих условию теоремы. |
| Теорема (2): |
Для любого иррационального числа существует бесконечное число дробей таких, что . |
| Доказательство: |
|
Рассмотрим три последующие подходящие дроби к и . Пусть ни одна из них не удовлетворяет условию теоремы. Тогда имеем: . Так как и расположены по разные стороны от , то при нечётном имеем , а при чётном - . Из последних двух неравенств следует, что . Умножив обе части на и перенеся все члены в левую часть получим: . То есть , следовательно для целых и имеем . Так как и расположены по разные стороны от , то аналогично получаем . Пользуясь рекуррентным соотношением получаем . Пришли к противоречию. Значит для одной из трёх последовательных подходящих дробей будет выполняться условие теоремы. Тогда придавая различные значения получим бесконечно много дробей, для которых выполняется условие теоремы. |
| Лемма (1): |
Любую конечную цепную дробь с чётным(нечётным) числом подходящих дробей можно представить в виде эквивалентной конечной цепной дроби с нечётным(чётным) числом подходящих дробей. |
| Доказательство: |
| Если : . Если : . |
| Лемма (2): |
Если , где удовлетворяют и , то - n-1-ая и n-ая подходящие дроби для . |
| Доказательство: |
|
Разложим в цепную дробь. По лемме 1 мы можем задать чётное либо нечётное следовательно . Так как и взаимно просты, то . Но следовательно , что возможно только если аналогично . Что и требовалось доказать. |
| Теорема (3): |
Если некоторая дробь удовлетворяет условию , то она — подходящая дробь для . |
| Доказательство: |
|
Пусть для дроби выполняется условие теоремы, тогда , где , . Дробь можно представить в виде конечной цепной дроби . В силу леммы 1 мы можем сделать чётным или нечётным. Пусть такое, что . Возьмём . Получим . Тогда . Заметим, что , тогда . Получаем в итоге . Следовательно, по лемме 2 теорема доказана. |