Soft-Max и Soft-Arg-Max — различия между версиями
Betson (обсуждение | вклад) (→Источники) |
Betson (обсуждение | вклад) (→Источники) |
||
| Строка 76: | Строка 76: | ||
==Источники== | ==Источники== | ||
# [https://www.youtube.com/watch?v=mlPNUbaphZA&ab_channel=MLLabITMO Лекция 7. Байесовские методы А. Забашта] | # [https://www.youtube.com/watch?v=mlPNUbaphZA&ab_channel=MLLabITMO Лекция 7. Байесовские методы А. Забашта] | ||
| − | # | + | # Лекция 7. Автоматическое дифференцирование и нейронные сети С. Муравьёв |
[[Категория: Машинное обучение]] | [[Категория: Машинное обучение]] | ||
Версия 18:32, 1 июля 2022
Содержание
Soft-Arg-Max
Постановка задачи
Пусть есть задача мягкой классификации:
Алгоритм выдает значения , где — число классов.
— уверенность алгоритма в том, что объект принадлежит классу ,
Для этих значений необходимо найти такие , что:
То есть — распределение вероятностей
Для этого выполним преобразование:
Тогда выполняется следующее:
- Модель , возвращающая , после преобразования будет возвращать и останется дифференцируемой
- soft-arg-max
Пусть soft-arg-max, тогда:
Свойства soft-arg-max
- Вычисляет по вектору чисел вектор с распределением вероятностей
- Можно интерпретировать как вероятность нахождения максимума в -й координате
- soft-arg-max soft-arg-max
- Предыдущее свойство используют для устойчивости вычислений при
Модификация soft-arg-max
soft-arg-max
Данная модификация полезна, когда необходимо контролировать распределение вероятностей, получаемое soft-arg-max. Чем больше параметр , тем больше получаемые вероятности будут похожи на равномерное распределение.
Soft-Max
Плохой Soft-Max
Зададим функцию soft-max таким образом:
soft-maxsoft-arg-max
Гладкая аппроксимация максимума. Математическое ожидание или средневзвешенное, где веса — экспоненты значений соответствующих элементов. Сохраняет некоторые свойства максимума:
- soft-max
- soft-max soft-max
Заданный выше soft-max — "плохой" в связи с тем, что мы считаем средневзвешенное значение, которое всегда будет меньше максимума, что приведёт к проблемам с поиском максимума.
Хороший Soft-Max
soft-max
- Не сохраняется свойство soft-max
- Производная равна soft-arg-max
В этом случае сохраняется монотонность, значит, не возникнет проблем с поиском минимума и максимума.
Связь между вариациями Soft-Max
Обозначим "плохой" soft-max как bad-soft-max. Тогда:
- bad-soft-maxsoft-arg-max
- soft-maxsoft-arg-max
- soft-arg-maxsoft-max
Примечания
- В большинстве статей пишется soft-max, хотя вместо этого подразумевается soft-arg-max
- soft-arg-max можно называть также как обобщённая (многомерная) сигмоида
- soft-arg-max является алгоритмом подсчёта весов для soft-max
Источники
- Лекция 7. Байесовские методы А. Забашта
- Лекция 7. Автоматическое дифференцирование и нейронные сети С. Муравьёв