Независимые случайные величины — различия между версиями
Mervap (обсуждение | вклад) м (Fix ticket) |
Mervap (обсуждение | вклад) м |
||
| Строка 5: | Строка 5: | ||
|definition=Cлучайные величины <tex> \xi</tex> и <tex>\eta</tex> называются '''независимыми''' (англ. ''independent''), если <tex>\forall \alpha ,\beta \in \mathbb R</tex> события <tex>[ \xi \leqslant \alpha ]</tex> и <tex>[ \eta \leqslant \beta ]</tex> независимы.<br> <tex>P((\xi \leqslant \alpha) \cap (\eta \leqslant \beta)) = P(\xi \leqslant \alpha)·P(\eta \leqslant \beta)</tex> | |definition=Cлучайные величины <tex> \xi</tex> и <tex>\eta</tex> называются '''независимыми''' (англ. ''independent''), если <tex>\forall \alpha ,\beta \in \mathbb R</tex> события <tex>[ \xi \leqslant \alpha ]</tex> и <tex>[ \eta \leqslant \beta ]</tex> независимы.<br> <tex>P((\xi \leqslant \alpha) \cap (\eta \leqslant \beta)) = P(\xi \leqslant \alpha)·P(\eta \leqslant \beta)</tex> | ||
}} | }} | ||
| − | Иначе говоря, две случайные величины называются независимыми, если по значению одной нельзя сделать выводы о значении другой. | + | Иначе говоря, две случайные величины называются [[Независимые события|независимыми]], если по значению одной нельзя сделать выводы о значении другой. |
=== Независимость в совокупности === | === Независимость в совокупности === | ||
{{Определение | {{Определение | ||
|id=def2 | |id=def2 | ||
| − | |definition=Случайные величины <tex>\xi_1,...,\xi_n</tex> называются '''независимы в совокупности''' (англ. ''mutually independent''), если события <tex>\xi_1 \leqslant \alpha_1,...,\xi_n \leqslant \alpha_n</tex> | + | |definition=Случайные величины <tex>\xi_1,...,\xi_n</tex> называются '''независимы в совокупности''' (англ. ''mutually independent''), если события <tex>\xi_1 \leqslant \alpha_1,...,\xi_n \leqslant \alpha_n</tex> независимы в совокупности. |
}} | }} | ||
Версия 20:34, 4 марта 2018
Содержание
Определения
| Определение: |
| Cлучайные величины и называются независимыми (англ. independent), если события и независимы. |
Иначе говоря, две случайные величины называются независимыми, если по значению одной нельзя сделать выводы о значении другой.
Независимость в совокупности
| Определение: |
| Случайные величины называются независимы в совокупности (англ. mutually independent), если события независимы в совокупности. |
Примеры
Карты
Пусть есть колода из карт ( масти и номиналов). Мы вытягиваем одну карту из случайным образом перемешанной колоды (вероятности вытягивания каждой отдельной карты равны). Определим следующие случайные величины:
— масть вытянутой карты : — червы, — пики, — крести, — бубны
: принимает значение при вытягивании карт с номиналами или при вытягивании валета, дамы, короля или туза
Для доказательства того, что независимы, требуется рассмотреть все и проверить выполнение равенства:
Для примера рассмотрим , остальные рассматриваются аналогично:
Тетраэдр
Рассмотрим вероятностное пространство «тетраэдр». Каждое число соответствует грани тетраэдра (по аналогии с игральной костью): . , .
Рассмотрим случай: , . , , .
Для этих значений и события являются независимыми, так же, как и для других (рассматривается аналогично), поэтому эти случайные величины независимы.
Заметим, что если: , , то эти величины зависимы: положим . Тогда , , .
Честная игральная кость
Рассмотрим вероятностное пространство «честная игральная кость»: , , . Для того, чтобы показать, что величины зависимы, надо найти такие , при которых
:
, ,
, откуда видно, что величины не являются независимыми.
См.также
- Вероятностное пространство, элементарный исход, событие
- Дискретная случайная величина
- Математическое ожидание случайной величины