Символ Похгаммера — различия между версиями
| Строка 95: | Строка 95: | ||
|statement=<tex dpi=150> x^{(n)} = \sum\limits_{k=1}^n (L(n,k) \times (x)_k) = \sum\limits_{k=1}^n (\binom{n-1}{k-1} \frac{n!}{k!} \times (x)_k) </tex> | |statement=<tex dpi=150> x^{(n)} = \sum\limits_{k=1}^n (L(n,k) \times (x)_k) = \sum\limits_{k=1}^n (\binom{n-1}{k-1} \frac{n!}{k!} \times (x)_k) </tex> | ||
|proof= | |proof= | ||
| − | Второе равенство получается из определения чисел Лаха | + | Второе равенство получается из определения чисел Лаха. Поэтому осталось доказать лишь то, что левая часть равняется правой: |
:<tex dpi=150> x^{(n)} =\sum\limits_{k=1}^n (\binom{n-1}{k-1} \frac{n!}{k!} \times (x)_k) </tex> | :<tex dpi=150> x^{(n)} =\sum\limits_{k=1}^n (\binom{n-1}{k-1} \frac{n!}{k!} \times (x)_k) </tex> | ||
Подставим целое <tex dpi=150>m</tex> из отрезка <tex dpi=150>[0;n]</tex>, тогда получим: | Подставим целое <tex dpi=150>m</tex> из отрезка <tex dpi=150>[0;n]</tex>, тогда получим: | ||
| Строка 123: | Строка 123: | ||
|statement=<tex dpi=150>x^{(n)}=\frac{\Gamma(x+n)}{\Gamma(x)}</tex> | |statement=<tex dpi=150>x^{(n)}=\frac{\Gamma(x+n)}{\Gamma(x)}</tex> | ||
|proof= | |proof= | ||
| − | :<tex dpi=150>\Gamma(z+1) = z\Gamma(z)</tex> {{---}} для комплексного <tex dpi=150>z</tex | + | :<tex dpi=150>\Gamma(z+1) = z\Gamma(z)</tex> {{---}} для комплексного <tex dpi=150>z</tex>. |
Значит, это тождество верно и для <tex dpi=150>z=x</tex>, где <tex dpi=150>x</tex> {{---}} вещественное число. То есть: | Значит, это тождество верно и для <tex dpi=150>z=x</tex>, где <tex dpi=150>x</tex> {{---}} вещественное число. То есть: | ||
:<tex dpi=150>\Gamma(x) = (x-1)\Gamma(x-1)</tex> {{---}} для вещественного <tex dpi=150>x</tex>. | :<tex dpi=150>\Gamma(x) = (x-1)\Gamma(x-1)</tex> {{---}} для вещественного <tex dpi=150>x</tex>. | ||
| Строка 168: | Строка 168: | ||
|proof= | |proof= | ||
<tex dpi=150>\frac{\partial^n(x^a)}{\partial x^n} =a\times\frac{\partial^{n-1}(x^{a-1})}{\partial x^{n-1}}=a(a-1)\times\frac{\partial^{n-2}(x^{a-2})}{\partial x^{n-2}}</tex> | <tex dpi=150>\frac{\partial^n(x^a)}{\partial x^n} =a\times\frac{\partial^{n-1}(x^{a-1})}{\partial x^{n-1}}=a(a-1)\times\frac{\partial^{n-2}(x^{a-2})}{\partial x^{n-2}}</tex> | ||
| − | :<tex dpi=150>=a(a-1)\cdots (a-n+ | + | :<tex dpi=150>=a(a-1)\cdots (a-n+2)\times\frac{\partial^{n-(n-1)}(x^{a-(n-1)})}{\partial x^{n-(n-1)}}=(a)_n\,\, x^{a-n}</tex> |
}} | }} | ||
| Строка 179: | Строка 179: | ||
==Обобщения== | ==Обобщения== | ||
| − | + | Существует обобщённый символ Похгаммера<ref>[https://en.wikipedia.org/wiki/Generalized_Pochhammer_symbol Generalized Pochhammer symbol]</ref>, используемый в многомерном математическом анализе. Также существует <tex>q</tex>-аналог<ref>[https://en.wikipedia.org/wiki/Q-analog ''q''-analog]</ref> {{---}} <tex>q</tex>-Похгаммер символ<ref>[https://en.wikipedia.org/wiki/Q-Pochhammer_symbol ''q''-Pochhammer symbol]</ref>. | |
| − | Обобщение убывающего факториала | + | Обобщение убывающего факториала {{---}} функция, определённая следующим образом: |
:<tex dpi=150>[f(x)]^{k/-h}=f(x)\cdot f(x-h)\cdot f(x-2h)\cdots f(x-(k-1)h),</tex> | :<tex dpi=150>[f(x)]^{k/-h}=f(x)\cdot f(x-h)\cdot f(x-2h)\cdots f(x-(k-1)h),</tex> | ||
| − | где <tex>-h</tex> | + | где <tex>-h</tex> и <tex>k</tex> {{---}} разница в убывающей арифметической прогрессии аргументов множителей и число множителей соответственно. Аналогичное обобщение растущего факториала: |
:<tex dpi=150>[f(x)]^{k/h}=f(x)\cdot f(x+h)\cdot f(x+2h)\cdots f(x+(k-1)h).</tex> | :<tex dpi=150>[f(x)]^{k/h}=f(x)\cdot f(x+h)\cdot f(x+2h)\cdots f(x+(k-1)h).</tex> | ||
Версия 17:30, 22 января 2018
| Определение: |
| В математике убывающим факториалом (англ. falling factorial) (иногда называется нисходящим факториалом, постепенно убывающим факториалом или нижним факториалом) обозначают:
|
| Определение: |
| Растущий факториал (англ. rising factorial) (иногда называется функцией Похгаммера, многочленом Похгаммера, восходящим факториалом, постепенно растущим произведением или верхним факториалом) определяется следующей формулой:
|
Грахам, Кнут и Паташник[1] предложили произносить эти записи как " растущий к " и " убывающий к " соответственно.
При значение принимается равным (пустое произведение).
В зависимости от контекста символ Похгаммера может обозначать как растущий факториал, так и убывающий факториал. Сам Лео Август Похгаммер для себя использовал в другом смысле — для обозначения биномиального коэффициента .
Когда неотрицательное целое число, равняется числу инъективных отображений[2] из множества с элементами во множество из элементов. Для обозначения этого числа часто применяют обозначения и . Символ Похгаммера в основном используется в алгебре, где — переменная, то есть есть ни что иное как многочлен степени от .
Другие формы записи убывающего факториала: , , , или .
Другое обозначение растущего факториала реже встречается, чем . Обозначение используется для растущего факториала, запись обычно применяется для обозначения убывающего факториала для избежания недоразумений.[3]
Примеры
Несколько первых растущих факториалов:
Несколько первых убывающих факториалов:
Коэффициенты в выражениях являются числами Стирлинга первого рода.
Свойства
Убывающий и растущий факториалы определены так же и в любом ассоциативном кольце с единицей и, следовательно, может быть даже комплексным числом, многочленом с комплексными коэффициентами или любой функцией определенной на комплексных числах.
Связывающие коэффициенты
Так как убывающие факториалы — базис кольца многочленов, мы можем переписать произведение двух из них как линейную комбинацию убывающих факториалов:
| Определение: |
| Коэффициенты называются связывающими коэффициентами (англ. connection coefficients). |
Биномиальный коэффициент
Растущий и убывающий факториалы могут быть использованы для обозначения биномиального коэффициента:
- и
Таким образом, многие свойства биномиальных коэффициентов справедливы для убывающих и растущих факториалов.
Связь убывающего и растущего факториалов
Растущий факториал может быть выражен как убывающий факториал, начинающийся с другого конца,
или как убывающий с противоположным аргументом,
Отношение двух символов Похгаммера определяется как:
Кроме того, мы можем выразить убывающие факториалы следующим образом:
Числа Стирлинга первого рода
Растущий факториал выражается с помощью чисел Стирлинга первого рода:
Числа Стирлинга второго рода
Убывающий и растущий факториалы выражаются друг через друга при помощи чисел Стирлинга второго рода:
Числа Лаха
Убывающий и растущий факториалы связаны друг с другом числами Лаха[4]:
| Утверждение: |
|
Второе равенство получается из определения чисел Лаха. Поэтому осталось доказать лишь то, что левая часть равняется правой: Подставим целое из отрезка , тогда получим: Заметим, что при , поэтому слагаемые из суммы в правой части, начиная с , равны нулю, то есть: Поделим обе части на и получим, что левая часть равна: а правая часть будет равна:
То есть мы хотим теперь доказать тождество: Это тождество очевидно из комбинаторики, так как обе части равны числу способов выбрать из элементов, разделённых на два множества по и элементов, элементов. С одной стороны нельзя не признать, что это левая часть тождества по определению сочетания. С другой стороны нельзя не согласиться, что это правая часть тождества, в котором означает количество элементов, берущихся из множества размера , а из второго множества размера . Многочлены, стоящие в левой и правой частях тождества, оказались равны в точке и при этом имеют степень не больше , то есть они формально совпадают. |
Гамма функция
Растущий факториал может быть продолжен на вещественные значения , но с использованием Гамма функции[5] при условии, что и вещественные числа, но не отрицательные целые.
| Утверждение: |
Значит, это тождество верно и для , где — вещественное число. То есть:
Заметим тогда, что:
Значит:
|
то же самое и про убывающий факториал:
| Утверждение: |
Значит, это тождество верно и для , где — вещественное число. То есть:
Заметим тогда, что:
Значит:
|
Дифференциал
| Утверждение: |
|
|
Теорема об умножении
По теореме об умножении[7] получаем следующие выражения для растущего факториала:
Обобщения
Существует обобщённый символ Похгаммера[8], используемый в многомерном математическом анализе. Также существует -аналог[9] — -Похгаммер символ[10].
Обобщение убывающего факториала — функция, определённая следующим образом:
где и — разница в убывающей арифметической прогрессии аргументов множителей и число множителей соответственно. Аналогичное обобщение растущего факториала:
Эта запись объединяет растущий и убывающий факториалы, которые и соответственно.
Для арифметической функции и параметров определен обобщенное факториальное произведение вида:
См.также
Примeчания
- ↑ Ronald L. Graham, Donald E. Knuth and Oren Patashnik in their book Concrete Mathematics (), Addison-Wesley, Reading MA. ISBN , pp. ,
- ↑ Injective function
- ↑ According to Knuth, The Art of Computer Programming, Vol. , rd ed., p. .
- ↑ Lah numbers
- ↑ Gamma function
- ↑ Ошибка цитирования Неверный тег
<ref>; для сносокGammaproofне указан текст - ↑ Multiplication theorem
- ↑ Generalized Pochhammer symbol
- ↑ q-analog
- ↑ q-Pochhammer symbol
