Неравенство Маркова — различия между версиями
Kowalski (обсуждение | вклад) |
(→Неравенство Маркова) |
||
| Строка 3: | Строка 3: | ||
{{Определение | {{Определение | ||
| − | |definition = '''Нера́венство Ма́ркова''' (англ. Markov's inequality) в теории вероятностей дает оценку вероятности, что случайная величина превзойдет по модулю фиксированную положительную константу, в терминах её [[Математическое ожидание случайной величины| математического ожидания]]. Получаемая оценка обычно груба, однако она позволяет получить определённое представление о распределении, когда последнее не известно | + | |definition = '''Нера́венство Ма́ркова''' (англ. ''Markov's inequality'') в теории вероятностей дает оценку вероятности, что случайная величина превзойдет по модулю фиксированную положительную константу, в терминах её [[Математическое ожидание случайной величины| математического ожидания]]. Получаемая оценка обычно груба, однако она позволяет получить определённое представление о распределении, когда последнее не известно |
явным образом. | явным образом. | ||
}} | }} | ||
Версия 23:17, 4 июня 2017
Содержание
Неравенство Маркова
| Определение: |
| Нера́венство Ма́ркова (англ. Markov's inequality) в теории вероятностей дает оценку вероятности, что случайная величина превзойдет по модулю фиксированную положительную константу, в терминах её математического ожидания. Получаемая оценка обычно груба, однако она позволяет получить определённое представление о распределении, когда последнее не известно явным образом. |
| Теорема (Неравенство Маркова): |
Пусть случайная величина определена на вероятностном пространстве (, , ), и ее математическое ожидание . Тогда:
где:
|
| Доказательство: |
|
Возьмем для доказательства следующее понятие: Пусть — некоторое событие. Назовем индикатором события случайную величину , равную единице если событие произошло, и нулю в противном случае. По определению величина имеет распределение Бернулли с параметром:
и ее математическое ожидание равно вероятности успеха . Индикаторы прямого и противоположного событий связаны равенством . Поэтому
Тогда:
Разделим обе части на : |
Пример
Ученики в среднем опаздывают на 3 минуты. Какова вероятность того, что ученик опоздает на 15 минут и более? Дать грубую оценку сверху.
Неравенство Чебышева
| Определение: |
| Неравенство Чебышева (англ. Chebyshev's inequality) является следствием неравенства Маркова и утверждает, что случайная величина в основном принимает значения, близкие к значению математического ожидания. Говоря более точно, оно дает оценку вероятности, что случайная величина примет значение, далекое от своего среднего. |
| Теорема (Неравенство Чебышева): |
Если , то будет выполнено
где:
|
| Доказательство: |
|
Для неравенство равносильно неравенству , поэтому |
Следствие
Как следствие получим так называемое "правило трех сигм", которое означает, что вероятность случайной величины отличаться от своего математического ожидания более чем на три корня из дисперсии мала.
| Утверждение: |
Если , то
. |
|
Если в доказательстве неравенства Чебышева вместо поставить рассуждения не изменятся, так как для неравенство равносильно неравенству , поэтому: |
См. также
- Дискретная случайная величина
- Дисперсия случайной величины
- Математическое ожидание случайной величины