Множества — различия между версиями
Rybak (обсуждение | вклад) |
Rybak (обсуждение | вклад) (Отмена правки 5113 участника Rybak (обсуждение)) |
||
| Строка 3: | Строка 3: | ||
Лекция от 06.09.10. | Лекция от 06.09.10. | ||
| − | |||
| − | |||
''Множество'' {{---}} первичное математическое понятие, которому не может быть дано строгое математическое определение. Часто множество определяют как «совокупность объектов, объединенных общим свойством». | ''Множество'' {{---}} первичное математическое понятие, которому не может быть дано строгое математическое определение. Часто множество определяют как «совокупность объектов, объединенных общим свойством». | ||
Версия 06:49, 22 ноября 2010
Лекция от 06.09.10.
Множество — первичное математическое понятие, которому не может быть дано строгое математическое определение. Часто множество определяют как «совокупность объектов, объединенных общим свойством».
В математическом анализе используется «наивная» теория множеств, которая является удобным языком описания фактов. Создана немецким математиком Г. Кантором(1870).
(объект а принадлежит множеству А)
(объект а не принадлежит множеству А)
Мощность множества
Лекция от 20 сентября 2010.
| Определение: |
| Если А и В — произвольные множества, и между ними можно установить биекцию, что они равномощны: |
Множество называется конечным, если его элементы можно пересчитать, иначе его оно называется бесконечным.
| Определение: |
| Если , то A называется счетным множеством. |
- счетное множество.
Мощность счетных множеств минимальна по сравнению с другими бесконечными множествами.
| Утверждение: |
Если А - бесконечное множество, то в нем содержится по меньшей мере одно счетное подмножество. |
|
- бесконечное множество. - также бесконечное множество. Продолжаем этот процесс далее, пока не останется - счетное множество. (ЩИТО? У кого есть что-нибудь адекватное насчет этого, исправьте, пожалуйста.) |
Если - совокупность попарно различных элементов, то это - счетное множество.
Для счетных множеств часто применяется следующий факт:
| Утверждение: |
Не более чем счетное объединение не более, чем счетных множеств, не более, чем счетно:
Пусть - счетное/конечное множество. Тогда: |
|
. TODO: А вот тут должна какая-то биекция, доказывающая это утверждение. |
| Определение: |
| называется континииумом. |
| Утверждение: |
- несчетное множество. |
|
Будем доказывать от противного. Применим принцип вложенных отрезков: Пусть Разделим I на 3 части и назовем . Такой отрезок всегда существует. Далее разобьем на 3 части. Назовем тот отрезок, который не содержит , и так далее.. В результате выстраивается система вложенных отрезков:
По свойству системы вложенных отрезков:
. Пусть теперь . По построению: , но , противоречие. |
Если , то обычно говорят, что А обладает мощностью континиума:
| Утверждение: |
|
Рассмотрим функцию С ее помощью можно установить биекцию между множествами и . Биекцию между множествами и можно установить параллельным переносом и сжатием:
Получили, что . Осталось доказать, что . Применим следующий прием: Пусть - попарно различны. Множество - счетное. Определим множество . Множество также счетное. Между счетными множествами можно установить биекцию: В итоге получили, что |
- счетно.
иррациональных чисел по мощности континииум.
Задание множеств
1) Перечислением элементов:
2) Заданием определенного свойства обьектов: , где P - определенное свойство обьекта а
Операции
- (A является подмножеством B, каждый элемент из А также принадлежит В ();
- (Пересечение множеств А и В: );
- (Объединение множеств А и В: );
- (Разность множеств: ;
- - пустое множество:
- - обьединение нескольких множеств. В общем случае может состоять из бесконечного количества множеств:
- ...
- , и так далее..
- - "множество всего".
- \ - дополнение множества А, дополнительное множество к А до U;
| Теорема (Де Моргана): |
| Доказательство: |
| ???????? |