Двоичный каскадный сумматор — различия между версиями
(→Схемная сложность) |
(→См. также) |
||
| Строка 89: | Строка 89: | ||
== См. также == | == См. также == | ||
| − | |||
*[[Каскадный сумматор]] | *[[Каскадный сумматор]] | ||
*[[Сумматор]] | *[[Сумматор]] | ||
Версия 16:32, 19 января 2016
| Определение: |
| Двоичный каскадный сумматор - Binary adder — цифровая схема, осуществляющая сложение двух многоразрядных двоичных чисел, с ускоренным формированием разрядов переноса. |
Принцип работы
Используемые обозначения: — -ый разряд суммируемых чисел, — биты переноса, — результат сложения.
Рассмотрим один элемент линейного каскадного сумматора - Ripple-carry adder. В некоторых случаях бит переноса зависит только от значений и :
- если , то ,
- если , то ;
Иначе () бит переноса не изменяется, то есть .
Три случая называются следующим образом:
- — "порождение" переноса,
- — "уничтожение" переноса,
- — "проталкивание" переноса;
Поскольку последовательное применение этих трёх действий над переносами принадлежит также одному из этих типов, то можно определить композицию действий над переносами. Обозначим композицию значком и построим таблицу значений (в столбце первый аргумент, в строке — второй):
| Таблица значений | |||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Поскольку функция ассоциативна, то можно распространить её на любое количество аргументов. Более того, поскольку для любого действия выполняется равенство , то функцию от нескольких действий можно определить как "последнее не ".
Схема
Сумматор состоит из двух частей. Первая часть — это группа полных сумматоров, вычисляющих ответ. Вторая часть — дерево отрезков, с помощью которого вычисляется бит переноса.
Обозначения
- — полный сумматор, вычисляет результат сложения,
- — блок вычисления композиции двух переносов,
- — блок вычисления , старшего бита сумматора;
Схемная сложность
Дерево отрезков вычисляет биты переноса за , оставшиеся действия выполняются за . Суммарное время работы — .
